Research Article
BibTex RIS Cite

Comparison of the Load-bearing Capacities of Monolithic PEEK, Zirconia and Hybrid Ceramic Molar Crowns

Year 2019, Volume: 20 Issue: 1, 45 - 50, 30.04.2019
https://doi.org/10.4274/meandros.galenos.2018.54269

Abstract

Objective: Although polyether ether ketone (PEEK) shows high biocompatibility in prosthetic dentistry, there is inadequate information about its clinical applications and limits. The purpose of this study was to compare the load-bearing capacities of PEEK, hybrid ceramic and zirconia crowns, which were fabricated using computeraided design and computer-aided manufacturing (CAD/CAM).
Materials and Methods: Three groups (n=10) of high-resistance PEEK polymer, hybrid ceramic and zirconia were fabricated using CAD/CAM. A universal test machine was used to assume the fracture resistance of all specimens. The specimens were loaded until final fracture occurred and load at fracture was recorded. Fracture resistance data were statistically analyzed by Tukey honest significant difference multiple comparison test.
Results: There was no significant statistical difference between PEEK group (2214±236 N) and hybrid ceramic group (2325±264 N) in relation to the loadbearing capacities (p>0.05), while zirconia group (3292±192 N) showed the highest values for fracture load.
Conclusion: All three crown materials were successful against physiological occlusal forces. Regarding the limitations of this in vitro study, PEEK could be an alternative crown material for fixed dental prostheses.

References

  • 1. Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a review. Dent Clin North Am 2004; 48: 531-44.
  • 2. Norling BK, Reisbick MH. The effect of nonionic surfactants on bubble entrapment in elastomeric impression materials. J Prosthet Dent 1979; 42: 342-7.
  • 3. Claus H. The structure and microstructure of dental porcelain in relationship to the firing conditions. Int J Prosthodont 1989; 2: 376-84.
  • 4. Alberto A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent 2015; 7: 495-500.
  • 5. Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. J Appl Oral Sci 2004; 12: 26-36.
  • 6. Mehl C, Ludwig K, Steiner M, Kern M. Fracture strength of prefabricated all-ceramic posterior inlay-retained fixed dental prostheses. Dent Mater 2010; 26: 67-75.
  • 7. Chevalier J. What future for zirconia as a biomaterial? 2016; 27: 535-43.
  • 8. De Kok P, Kleverlaan CJ, De Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent 2015; 114: 59-66.
  • 9. Chevalier J, Loh J, Gremillard L, Meille S, Adolfson E. Low-temperature degradation in zirconia with a porous surface. Acta Biomater 2011; 7: 2986-93.
  • 10. Lameira DP, Buarque e Silva WA, Andrade e Silva F, De Souza GM. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns. Biomed Res 2015; 2015: 418641.
  • 11. Beschnidt SM, Strub JR. Evaluation of the marginal accuracy of different all‐ceramic crown systems after simulation in the artificial mouth. J Oral Rehabil 1999; 26: 582-93.
  • 12. Kiliaridis S, Kjellberg H, Wenneberg B, Engström C. The relationship between maximal bite force, bite force endurance, and facial morphology during growth: A cross-sectional study. Acta Odontol Scand 1993; 51: 323-31.
  • 13. Pröbster L, Geıs‐Gerstorfer J, Kirchner E, Kanjantra P. In vitro evaluation of a glass–ceramic restorative material. J Oral Rehabil 1997; 24: 636-45.
  • 14. Dirxen C, Blunck U, Preissner S. Clinical performance of a new biomimetic double network material. Open Dent J 2013; 7: 118-22.
  • 15. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent 2014; 26: 382-93.
  • 16. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007; 28: 4845-69.
  • 17. Sandler J, Windle AH, Werner P, Altstadt V, Shaffer MS. Carbon-nanofibre-reinforced poly (ether ether ketone) fibres. J Mater Sci 2003; 38: 2135-41.
  • 18. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016; 60: 12-9.
  • 19. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006; 27: 324-34.
  • 20. Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Ross M, et al. Polyetheretherketone—a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater 2013; 101: 1209-16.
  • 21. Taufall S, Eichberger M, Schmidlin PR, Stawarczyk B. Fracture load and failure types of different veneered polyetheretherketone fixed dental prostheses. Clin Oral Investig 2016; 20: 2493-500.
  • 22. Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edelhoff D, Schmidlin PR. Three-unit reinforced polyetheretherketone composite FDPs: Influence of fabrication method on load-bearing capacity and failure types. Dent Mater J 2015; 34: 7-12.
  • 23. Rees J, Jacobsen P. The elastic moduli of enamel and dentine. Clin Mater 1993; 14: 35-9.
  • 24. Hallmann L, Mehl A, Sereno N, Hammerle CH. The improvement of adhesive properties of PEEK through pre-treatments. Appl Surf Sci 2012; 258: 7213-8.
  • 25. Noiset O, Schneider YJ, Marchand-Brynaert J. Adhesion and growth of CaCo2 cells on surface-modified PEEK substrata. J Biomater Sci Polym Ed 2000; 11: 767-86.
  • 26. Kern M, Lehmann F. Influence of surface conditioning on bonding to polyetheretherketone (PEEK). Dent Mater 2012; 28: 1280-3.
  • 27. Parmigiani-Izquierdo JM, Cabaña-Muñoz ME, Merino JJ, Sánchez-Pérez A. Zirconia implants and peek restorations for the replacement of upper molars. Int J Implant Dent 2017; 3: 5.
  • 28. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015; 48: 1-7.
  • 29. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 2004; 92: 491-5.
  • 30. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993; 6: 4627.

Year 2019, Volume: 20 Issue: 1, 45 - 50, 30.04.2019
https://doi.org/10.4274/meandros.galenos.2018.54269

Abstract

References

  • 1. Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a review. Dent Clin North Am 2004; 48: 531-44.
  • 2. Norling BK, Reisbick MH. The effect of nonionic surfactants on bubble entrapment in elastomeric impression materials. J Prosthet Dent 1979; 42: 342-7.
  • 3. Claus H. The structure and microstructure of dental porcelain in relationship to the firing conditions. Int J Prosthodont 1989; 2: 376-84.
  • 4. Alberto A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent 2015; 7: 495-500.
  • 5. Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. J Appl Oral Sci 2004; 12: 26-36.
  • 6. Mehl C, Ludwig K, Steiner M, Kern M. Fracture strength of prefabricated all-ceramic posterior inlay-retained fixed dental prostheses. Dent Mater 2010; 26: 67-75.
  • 7. Chevalier J. What future for zirconia as a biomaterial? 2016; 27: 535-43.
  • 8. De Kok P, Kleverlaan CJ, De Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent 2015; 114: 59-66.
  • 9. Chevalier J, Loh J, Gremillard L, Meille S, Adolfson E. Low-temperature degradation in zirconia with a porous surface. Acta Biomater 2011; 7: 2986-93.
  • 10. Lameira DP, Buarque e Silva WA, Andrade e Silva F, De Souza GM. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns. Biomed Res 2015; 2015: 418641.
  • 11. Beschnidt SM, Strub JR. Evaluation of the marginal accuracy of different all‐ceramic crown systems after simulation in the artificial mouth. J Oral Rehabil 1999; 26: 582-93.
  • 12. Kiliaridis S, Kjellberg H, Wenneberg B, Engström C. The relationship between maximal bite force, bite force endurance, and facial morphology during growth: A cross-sectional study. Acta Odontol Scand 1993; 51: 323-31.
  • 13. Pröbster L, Geıs‐Gerstorfer J, Kirchner E, Kanjantra P. In vitro evaluation of a glass–ceramic restorative material. J Oral Rehabil 1997; 24: 636-45.
  • 14. Dirxen C, Blunck U, Preissner S. Clinical performance of a new biomimetic double network material. Open Dent J 2013; 7: 118-22.
  • 15. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent 2014; 26: 382-93.
  • 16. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007; 28: 4845-69.
  • 17. Sandler J, Windle AH, Werner P, Altstadt V, Shaffer MS. Carbon-nanofibre-reinforced poly (ether ether ketone) fibres. J Mater Sci 2003; 38: 2135-41.
  • 18. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016; 60: 12-9.
  • 19. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006; 27: 324-34.
  • 20. Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Ross M, et al. Polyetheretherketone—a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater 2013; 101: 1209-16.
  • 21. Taufall S, Eichberger M, Schmidlin PR, Stawarczyk B. Fracture load and failure types of different veneered polyetheretherketone fixed dental prostheses. Clin Oral Investig 2016; 20: 2493-500.
  • 22. Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edelhoff D, Schmidlin PR. Three-unit reinforced polyetheretherketone composite FDPs: Influence of fabrication method on load-bearing capacity and failure types. Dent Mater J 2015; 34: 7-12.
  • 23. Rees J, Jacobsen P. The elastic moduli of enamel and dentine. Clin Mater 1993; 14: 35-9.
  • 24. Hallmann L, Mehl A, Sereno N, Hammerle CH. The improvement of adhesive properties of PEEK through pre-treatments. Appl Surf Sci 2012; 258: 7213-8.
  • 25. Noiset O, Schneider YJ, Marchand-Brynaert J. Adhesion and growth of CaCo2 cells on surface-modified PEEK substrata. J Biomater Sci Polym Ed 2000; 11: 767-86.
  • 26. Kern M, Lehmann F. Influence of surface conditioning on bonding to polyetheretherketone (PEEK). Dent Mater 2012; 28: 1280-3.
  • 27. Parmigiani-Izquierdo JM, Cabaña-Muñoz ME, Merino JJ, Sánchez-Pérez A. Zirconia implants and peek restorations for the replacement of upper molars. Int J Implant Dent 2017; 3: 5.
  • 28. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015; 48: 1-7.
  • 29. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 2004; 92: 491-5.
  • 30. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993; 6: 4627.
There are 30 citations in total.

Details

Primary Language English
Subjects Dentistry (Other)
Journal Section Research Article
Authors

Bülent Kadir Tartuk

Emrah Ayna

Emine Göncü Başaran

Publication Date April 30, 2019
Published in Issue Year 2019 Volume: 20 Issue: 1

Cite

EndNote Tartuk BK, Ayna E, Göncü Başaran E (April 1, 2019) Comparison of the Load-bearing Capacities of Monolithic PEEK, Zirconia and Hybrid Ceramic Molar Crowns. Meandros Medical And Dental Journal 20 1 45–50.

Cited By