Research Article
BibTex RIS Cite

Aşırı Uyarılabilirlik Koşullarında Gap-Junction İnhibisyonunun Yüksek Frekanslı Salınımlar Üzerine Etkisi: In Vitro Elektrofizyolojik Bir Çalışma

Year 2025, Volume: 26 Issue: 3, 257 - 262, 22.09.2025
https://doi.org/10.69601/meandrosmdj.1681110

Abstract

Amaç: Beynin elektriksel aktivitesinin 80-500 Hz arasındaki frekans bandını kapsayan Yüksek Frekanslı Salınımlar (HFO), epileptik nöbetler için bir belirteç olarak kabul edilir. Korteksteki boşluk-bağlantıların HFO'lara katkısını araştırdık.
Yöntemler: HFO'lar iki farklı frekans bandında araştırıldı: 80-200 Hz dalgalanma ve 250-500 HZ hızlı dalgalanma olarak kabul edildi. HFO'lar, taze beyin dilimlerinde 4AP kaynaklı nöbetlerin elektrofizyolojik kayıtlarından tespit edildi. Daha sonra boşluk-bağlantısı blokerleri uygulandı ve HFO'ların gücü üzerindeki etkileri takip edildi. Bir konneksin blokeri olan Flufanemik asit (100 μM, n=10) ve bir panneksin-1 blokeri olan Probenesid'in (200 μM, n=8) etkileri analiz edildi. İlgili frekans aralıklarının güç spektrumu analizleri yapıldı. Blokörlerin 0-40 Hz frekansındaki etkileri de analiz edildi.
Bulgular: Flufenamik asit 0-40 Hz frekans bandı ve dalgalanma deşarjlarını önemli ölçüde azalttı ve hızlı dalgalanmalar üzerinde hiçbir etkisi olmadı. Probenesid uygulaması 0-40 Hz, dalgalanma ve hızlı dalgalanma frekans aralığını azalttı ancak anlamlı ölçüde değiştirmedi.
Sonuçlar: Bu, iki boşluk bağlantı blokeri olan flufenamik asit ve probenesidin aynı deneysel koşullar altında uygulandığı ve etkinliklerinin birbirleriyle karşılaştırıldığı ilk çalışmadır. HFO son yıllarda birçok çalışmanın konusu olmuştur. Bu salınımların ve başlangıç bölgelerinin tespiti, gelişecek nöbet hakkında derin bilgiler sağlar. Gelecekteki çalışmalar epilepsi hastalığındaki cevapsız sorulara ışık tutacak ve nöbet patogenezinin ve yeni tedavi yöntemlerinin geliştirilmesine katkıda bulunacaktır.

References

  • 1. Bragin A, Engel Jr J, Wilson CL , Fried I , Buzsaki G. High-frequency oscillations in human brain. Hippocampus, 1999; 9:137-142.
  • 2. Jacobs J, LeVan P , Chander R , Hall J , Dubeau F , Gotman J. Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 2008; 49: 1893-1907.
  • 3. Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci 2007;30:309–316.
  • 4. Buzsaki G, Horvath Z, Urioste R, et al. High-frequency network oscillation in the hippocampus. Science 1992;256:1025–1027.
  • 5. Buzsaki G. The Hippocampo-Neortical Dialogue. Cereb Cortex. 1996;6:81–92.
  • 6. Gliske SV, Stacey WC, Lim E, et al. Emergence of narrowband high frequency oscillations from asynchronous, uncoupled neural firing. Int J Neural Syst 2017;27:1650049.
  • 7. Staba R. Normal and Pathologic High-Frequency Oscillations. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th edition. 2012.
  • 8. Draguhn A, Traub RD, Schmitz D, et al. Electrical coupling underlies high frequency oscillations in the hippocampus in vitro. Nature 1998;394:189–192.
  • 9. Maier N, Guldenagel M, Sohl G, Siegmund H, Willecke K, Draguhn A. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol. 2002;541:521–528.
  • 10. Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the healthy and diseased brain. Physiol Rev. 2021; 101(1):93–145.
  • 11. Koulakoff A, Mei X, Orellana JA, Sáez JC, Giaume C. Glial connexin expression and function in the context of Alzheimer’s disease. Biochim Biophys Acta. 2012; 1818(8): 2048–2057.
  • 12. Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65(8): 1205–1226.
  • 13. Giaume C, Sáez JC, Song W, Leybaert L, Naus CC. Connexins and pannexins in Alzheimer’s disease. Neurosci Lett. 2019; 695: 100–105.
  • 14. Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11(1).
  • 15. Yeung AK, Patil CS, Jackson MF. Pannexin-1 in the CNS: Emerging concepts in health and disease. J Neurochem. 2020; 154(5):468–485.
  • 16. Sanchez-Arias JC, van der Slagt E, Vecchiarelli HA, Candlish RC, York N, Young PA, Shevtsova O, Juma A, Tremblay MÈ, Swayne LA. Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther. 2021; 225:107840.
  • 17. Aydın-Abidin S, Abidin İ. 7,8-Dihydroxyflavone potentiates ongoing epileptiform activity in mice brain slices. Neuroscience Letters 2019; 703:25-31.
  • 18.Fernández M, Lao-Peregrín C, Martín ED. Flufenamic acid suppresses epileptiform activity in hippocampus by reducing excitatory synaptic transmission and neuronal excitability. Epilepsia, 2010; 51: 384-390.
  • 19. Mikroulis A, Lisgaras CP, Psarropoulou C. Immature status epilepticus: ın vitro models reveal differences in cholinergic control and HFO properties of adult CA3 interictal discharges in temporal vs septal hippocampus. Neuroscience. 2018; 369: 386-398.
  • 20. Urrestarazu E, Chander R, Dubeau F, Gotman J. Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. Brain 2007; 130(9): 2354-2366.
  • 21. Levesque M and Avoli M. high-frequency oscillations and focal seizures in epileptic rodents. Neurobiol Disease 2019; 124: 396-407.
  • 22. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD. Inhibition of gap junction hemichannels by chloride channel blockers. J. Membr. Biol. 2002;185:93–102.
  • 23. Srinivas M, Spray DC. Closure of gap junction channels by arylaminobenzoates. Mol. Pharmacol. 2003;63:1389–1397.
  • 24. Sinyak DS, Amakhin DV, Soboleva EB, Gryaznova MO, Zaitsev AV. Flufenamic acid abolishes epileptiform activity in the entorhinal cortex slices by reducing the temporal summation of glutamatergic responses. Biochemical and Biophysical Research Communications, 2024; 733:150666.
  • 25. Dahl G, Qiu F, and Wang J. The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology 2013; 75:583–593.
  • 26. Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, and Leybaert L. Paracrine signaling through plasma membrane hemichannels. Biochim. Biophys. Acta. 2013; 1828:35–50.
  • 27. Dahl, G. The Pannexin1 membrane channel: Distinct conformations and functions. FEBS Lett. 2018; 592:3201–3209.
  • 28. Dahl G, and Keane RW. Pannexin: From discovery to bedside in 11±4 years? Brain Res. 2012; 1487:150–159.
  • 29. Eugenin EA. Role of connexin/pannexin containing channels in infectious diseases. FEBS Lett. 2014; 588:1389–1395.
  • 30. Navis KE, Fan CY, Trang T, Thompson RJ, and Derksen DJ. Pannexin 1 channels as a therapeutic target: Structure, inhibition, and outlook. ACS Chem. Neurosci. 2020; 11:2163–2172.
  • 31. Vultaggio-Poma V, Sarti AC, and Di Virgilio F. Extracellular ATP: A feasible target for cancer therapy. Cells. 2020; 9:2496.
  • 32. Jaque-Fernandez F, Allard B, Monteiro L, Lafoux A, Huchet C, Jaimovich E, Berthier C, Jacquemond. Probenecid affects muscle Ca+2 homeostasis and contraction indepently from pannexin channel block. J Gen Physiol. 2023; 155(4):e202213203.
  • 33. Dossi E, Blauwblomme T, Moulard J, Chever O, Vasile F, Guinard E, Le Bert M, Couillin I, Pallud J, Capelle L, et al. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci. Transl. Med. 2018;10:eaar3796.
  • 34. Aquilino MS, Whyte-Fagundes P, Lukewich MK, Zhang L, Bardakjian BL, Zoidl GR, Carlen PL. Pannexin-1 Deficiency Decreases Epileptic Activity in Mice. Int. J. Mol. Sci. 2020;21:7510.
  • 35. Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia. 1999;40:127–137.
  • 36. Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr. Quantitative analysis of high frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol. 2002;88:1743–1752.
  • 37. Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JG. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010;133:1380–1390.

Effect of Gap-Junctıon Inhıbıtıon on High-Frequency Oscillations Under Hyperexcitability: An In Vitro Electrophysiological Study

Year 2025, Volume: 26 Issue: 3, 257 - 262, 22.09.2025
https://doi.org/10.69601/meandrosmdj.1681110

Abstract

Objective: High Frequency Oscillations (HFO), covers the frequency band between 80-500 Hz component of the electrical activity of brain, is considered a marker for epileptic seizures. We investigated the contribution of gap-junction to HFOs in cortex.
Methods: HFOs were investigated in two different frequency bands: 80-200 Hz accepted as ripple and 250-500 HZ as fast ripples. HFO’s detected from electrophysiological recordings of 4AP-induced seizures in fresh brain slices. Then, gap-junction blockers were applied and their effects on power of HFOs were followed. Effects of Flufanemic acid (100 μM, n=10), a connexin blocker, Probenecid (200 μM, n=8), a pannexin-1 blocker, were analyzed. Power spectrum analyses of the relevant frequency ranges were performed. The effects of the blockers on 0-40 Hz frequency also analyzed.
Results: Flufenamic acid significantly reduced 0-40 Hz frequency band and ripple discharges, and had no effect on fast ripples. Probenecid application reduced the 0-40 Hz, ripple and fast ripple frequency range, but did not change significantly.
Conclusion: This is the first study in which two gap junction blockers, flufenamic acid and probenecid, were applied under the same experimental conditions and their effectiveness was compared with each other. HFO has been the subject of many studies in recent years. The detection of these oscillations and their onset regions provide deep information about the seizure that will develop. Future studies will shed light on unanswered questions in epilepsy disease and contribute to the development of seizure pathogenesis and new treatment methods.

References

  • 1. Bragin A, Engel Jr J, Wilson CL , Fried I , Buzsaki G. High-frequency oscillations in human brain. Hippocampus, 1999; 9:137-142.
  • 2. Jacobs J, LeVan P , Chander R , Hall J , Dubeau F , Gotman J. Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 2008; 49: 1893-1907.
  • 3. Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci 2007;30:309–316.
  • 4. Buzsaki G, Horvath Z, Urioste R, et al. High-frequency network oscillation in the hippocampus. Science 1992;256:1025–1027.
  • 5. Buzsaki G. The Hippocampo-Neortical Dialogue. Cereb Cortex. 1996;6:81–92.
  • 6. Gliske SV, Stacey WC, Lim E, et al. Emergence of narrowband high frequency oscillations from asynchronous, uncoupled neural firing. Int J Neural Syst 2017;27:1650049.
  • 7. Staba R. Normal and Pathologic High-Frequency Oscillations. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th edition. 2012.
  • 8. Draguhn A, Traub RD, Schmitz D, et al. Electrical coupling underlies high frequency oscillations in the hippocampus in vitro. Nature 1998;394:189–192.
  • 9. Maier N, Guldenagel M, Sohl G, Siegmund H, Willecke K, Draguhn A. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol. 2002;541:521–528.
  • 10. Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the healthy and diseased brain. Physiol Rev. 2021; 101(1):93–145.
  • 11. Koulakoff A, Mei X, Orellana JA, Sáez JC, Giaume C. Glial connexin expression and function in the context of Alzheimer’s disease. Biochim Biophys Acta. 2012; 1818(8): 2048–2057.
  • 12. Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65(8): 1205–1226.
  • 13. Giaume C, Sáez JC, Song W, Leybaert L, Naus CC. Connexins and pannexins in Alzheimer’s disease. Neurosci Lett. 2019; 695: 100–105.
  • 14. Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11(1).
  • 15. Yeung AK, Patil CS, Jackson MF. Pannexin-1 in the CNS: Emerging concepts in health and disease. J Neurochem. 2020; 154(5):468–485.
  • 16. Sanchez-Arias JC, van der Slagt E, Vecchiarelli HA, Candlish RC, York N, Young PA, Shevtsova O, Juma A, Tremblay MÈ, Swayne LA. Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther. 2021; 225:107840.
  • 17. Aydın-Abidin S, Abidin İ. 7,8-Dihydroxyflavone potentiates ongoing epileptiform activity in mice brain slices. Neuroscience Letters 2019; 703:25-31.
  • 18.Fernández M, Lao-Peregrín C, Martín ED. Flufenamic acid suppresses epileptiform activity in hippocampus by reducing excitatory synaptic transmission and neuronal excitability. Epilepsia, 2010; 51: 384-390.
  • 19. Mikroulis A, Lisgaras CP, Psarropoulou C. Immature status epilepticus: ın vitro models reveal differences in cholinergic control and HFO properties of adult CA3 interictal discharges in temporal vs septal hippocampus. Neuroscience. 2018; 369: 386-398.
  • 20. Urrestarazu E, Chander R, Dubeau F, Gotman J. Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. Brain 2007; 130(9): 2354-2366.
  • 21. Levesque M and Avoli M. high-frequency oscillations and focal seizures in epileptic rodents. Neurobiol Disease 2019; 124: 396-407.
  • 22. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD. Inhibition of gap junction hemichannels by chloride channel blockers. J. Membr. Biol. 2002;185:93–102.
  • 23. Srinivas M, Spray DC. Closure of gap junction channels by arylaminobenzoates. Mol. Pharmacol. 2003;63:1389–1397.
  • 24. Sinyak DS, Amakhin DV, Soboleva EB, Gryaznova MO, Zaitsev AV. Flufenamic acid abolishes epileptiform activity in the entorhinal cortex slices by reducing the temporal summation of glutamatergic responses. Biochemical and Biophysical Research Communications, 2024; 733:150666.
  • 25. Dahl G, Qiu F, and Wang J. The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology 2013; 75:583–593.
  • 26. Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, and Leybaert L. Paracrine signaling through plasma membrane hemichannels. Biochim. Biophys. Acta. 2013; 1828:35–50.
  • 27. Dahl, G. The Pannexin1 membrane channel: Distinct conformations and functions. FEBS Lett. 2018; 592:3201–3209.
  • 28. Dahl G, and Keane RW. Pannexin: From discovery to bedside in 11±4 years? Brain Res. 2012; 1487:150–159.
  • 29. Eugenin EA. Role of connexin/pannexin containing channels in infectious diseases. FEBS Lett. 2014; 588:1389–1395.
  • 30. Navis KE, Fan CY, Trang T, Thompson RJ, and Derksen DJ. Pannexin 1 channels as a therapeutic target: Structure, inhibition, and outlook. ACS Chem. Neurosci. 2020; 11:2163–2172.
  • 31. Vultaggio-Poma V, Sarti AC, and Di Virgilio F. Extracellular ATP: A feasible target for cancer therapy. Cells. 2020; 9:2496.
  • 32. Jaque-Fernandez F, Allard B, Monteiro L, Lafoux A, Huchet C, Jaimovich E, Berthier C, Jacquemond. Probenecid affects muscle Ca+2 homeostasis and contraction indepently from pannexin channel block. J Gen Physiol. 2023; 155(4):e202213203.
  • 33. Dossi E, Blauwblomme T, Moulard J, Chever O, Vasile F, Guinard E, Le Bert M, Couillin I, Pallud J, Capelle L, et al. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci. Transl. Med. 2018;10:eaar3796.
  • 34. Aquilino MS, Whyte-Fagundes P, Lukewich MK, Zhang L, Bardakjian BL, Zoidl GR, Carlen PL. Pannexin-1 Deficiency Decreases Epileptic Activity in Mice. Int. J. Mol. Sci. 2020;21:7510.
  • 35. Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia. 1999;40:127–137.
  • 36. Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr. Quantitative analysis of high frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol. 2002;88:1743–1752.
  • 37. Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JG. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010;133:1380–1390.
There are 37 citations in total.

Details

Primary Language English
Subjects Central Nervous System
Journal Section Research Article
Authors

Hilal Öztürk 0000-0003-0079-5184

Publication Date September 22, 2025
Submission Date April 21, 2025
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 26 Issue: 3

Cite

EndNote Öztürk H (September 1, 2025) Effect of Gap-Junctıon Inhıbıtıon on High-Frequency Oscillations Under Hyperexcitability: An In Vitro Electrophysiological Study. Meandros Medical And Dental Journal 26 3 257–262.