Impact of Cryopreservation on Caspase-3 Gene Expression, Cell Viability, and Sperm Motility in Bull Testicular Tissue and Epididymal Sperm
Year 2025,
Volume: 10 Issue: 2, 496 - 503, 31.08.2025
Cumali Kaya
,
Burcu Esin
,
Cansu Can
,
Eda Turgut Uğurtay
,
Mesut Çevik
Abstract
This study investigated the effects of cryopreservation of testicular tissue and epididymal sperm in bulls on spermatological parameters, cell viability, and caspase-3 gene expression, a marker of apoptosis. Epididymal sperm and testicular tissue pieces obtained from testes collected from bulls (n: 15) were cryopreserved and stored in liquid nitrogen (-196°C). Epididymal sperm were frozen in liquid nitrogen vapor using the straw method, while testicular tissue pieces were frozen in cryotubes using a slow freezing protocol with Dimethylsulfoxide (DMSO) and Ethylene Glycol (EG) as cryoprotectants. Fresh semen exhibited significantly higher motility, progressive motility, kinematic parameters, and viability values compared to those after thawing (P < 0.05). Higher cell viability was achieved in DMSO-cryopreserved testicular tissues (53.72 ± 6.36) compared to EG-cryopreserved testicular tissues (41.83 ± 7.22) (P < 0.05). Caspase-3 gene expression was determined to be 42.66 ± 98.26-fold increased in DMSO-cryopreserved tissues and 65.05 ± 106.03 fold increased in EG-cryopreserved tissues after thawing. In epididymal sperm, gene expression levels increased by an average of 12.22 ± 34.60 fold compared to fresh samples. These findings suggest that cryopreservation affects cellular integrity and triggers apoptotic pathways and repair mechanisms, highlighting the need to optimize protocols to reduce cryo-induced damage and increase post-thaw viability.
References
-
Aitken, R. J., Findlay, J. K., Hutt, K. J., & Kerr, J. B. (2011). Apoptosis in the germ line. Reproduction, 141(2), 139. https://doi.org/10.1530/REP-10-0232
-
Akal, E., Akar, M., & Kaya C. (2021). Mandalarda Epididimal Spermanın Eldesi ve Kriyoprezervasyonu, Turkiye Klinikleri Reproduction and Artificial Insemination- Special Topics, 7, 16–22.
-
Bejarano, I., Rodríguez, A. B., & Pariente, J. A. (2018). Apoptosis is a demanding selective tool during the development of fetal male germ cells. Frontiers in Cell and Developmental biology, 6, 65.
https://doi.org/10.3389/fcell.2018.00065
-
Buarpung, S., Tharasanit, T., Comizzoli, P., & Techakumphu, M. (2013). Feline spermatozoa from fresh and cryopreserved testicular tissues have comparable ability to fertilize matured oocytes and sustain the embryo development after intracytoplasmic sperm injection. Theriogenology, 79(1), 149-158.
https://doi.org/10.1016/j.theriogenology.2012.09.022
-
Bucak, M. N., Ataman, M. B., Başpınar, N., Uysal, O., Taşpınar, M., Bilgili, A., & Akal, E. (2015). Lycopene and resveratrol improve post‐thaw bull sperm parameters: sperm motility, mitochondrial activity and DNA integrity. Andrologia, 47(5), 545-552. https://doi.org/10.1111/and.12301
-
Cai, H., Wu, J. Y., An, X. L., Zhao, X. X., Wang, Z. Z., Tang, B., & Zhang, X. M. (2016). Enrichment and culture of spermatogonia from cryopreserved adult bovine testis tissue. Animal Reproduction Science, 166, 109-115. https://doi.org/10.1016/j.anireprosci.2016.01.009
-
Cayli, S., Sakkas, D., Vigue, L., Demir, R., & Huszar, G. (2004). Cellular maturity and apoptosis in human sperm: creatine kinase, caspase‐3 and Bcl‐XL levels in mature and diminished maturity sperm. MHR: Basic Science of Reproductive Medicine, 10(5), 365-372. https://doi.org/10.1093/molehr/gah050
-
Chaveiro, A., Cerqueira, C., Silva, J., Franco, J., & da Silva, F. M. (2015). Evaluation of frozen thawed kauda epididymal sperms and in vitro fertilizing potential of bovine sperm collected from the kauda epididymal. Iranian Journal of Veterinary Research, 16(2), 188.
-
Chicaiza-Cabezas, N., Garcia-Herreros, M., & Aponte, P. M. (2023). Germplasm cryopreservation in bulls: Effects of gonadal tissue type, cryoprotectant agent, and freezing-thawing rates on sperm quality parameters. Cryobiology, 110, 24-35. https://doi.org/10.1016/j.cryobiol.2023.01.001
-
Dalal, J., Kumar, A., Honparkhe, M., & Brar, P. S. (2019). Effect of Z-IETD-Fmk (Caspase Inhibitor) supplementation on apoptosis like changes developed in buffalo bull sperm during cryopreservation. International Journal of Current Microbiology and Applied Sciences, 8(02), 516-524. https://doi.org/10.20546/ijcmas.2019.802.059
-
Demirci, E., & Selcuk, M. (2021). Epididimal manda spermasının dondurulmasında spermaya katılan farklı sulandırıcıların spermatolojik parametreler üzerine etkisinin in-vitro değerlendirilmesi. Veteriner Hekimler Derneği Dergisi, 94(1), 1-10. https://doi.org/10.33188/%20vetheder.1082675
-
Emokpae, M. A., & Chima, H. N. (2018). Effect of senescence on some apoptosis and oxidative stress markers in infertile normozospermic and oligospermic men: A cross-sectional study. International Journal of Reproductive Biomedicine, 16(7), 435.
-
Evenson, D. P., Darzynkiewicz, Z., & Melamed, M. R. (1982). Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. Journal of Histochemistry & Cytochemistry, 30(3), 279-280. https://doi.org/10.1177/30.3.6174566
-
Gehrmann, W., Elsner, M., & Lenzen, S. (2010). Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β‐cells. Diabetes, Obesity and Metabolism, 12, 149-158. https://doi.org/10.1111/j.1463-1326.2010.01265.x
-
Goovaerts, I. G. F., Hoflack, G. G., Van Soom, A., Dewulf, J., Nichi, M., de Kruif, A., & Bols, P. E. J. (2006). Evaluation of epididymal semen quality using the Hamilton–Thorne analyser indicates variation between the two kaudae epididymides of the same bull. Theriogenology, 66(2), 323-330.
https://doi.org/10.1016/j.theriogenology.2005.11.018
-
Graham, J. K., & Moce, E. (2005). Fertility evaluation of frozen/thawed semen. Theriogenology, 64(3), 492-504. https://doi.org/10.1016/j.theriogenology.2005.05.006
-
Isachenko, E., Isachenko, V., Katkov, I. I., Dessole, S., & Nawroth, F. (2003). Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reproductive Biomedicine Online, 6(2), 191-200. https://doi.org/10.1016/S1472-6483(10)61710-5
-
Kaya, C., Esin, B., Akar, M., Can, C., & Çevik, M. (2024). Investigation of the efficacy of different cryoprotectants in the freezing of testicular tissue and epididymal sperm: Spermatological parameters, tissue viability and PARP-1 gene expression. Cryobiology, 117, 104982. https://doi.org/10.1016/j.cryobiol.2024.104982
-
Keros, V., Rosenlund, B., Hultenby, K., Aghajanova, L., Levkov, L., & Hovatta, O. (2005). Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Human Reproduction, 20(6), 1676-1687. https://doi.org/10.1093/humrep/deh797
-
Latchoumycandane, C., Vaithinathan, S., D’Cruz, S. C., & Mathur, P. P. (2020). Apoptosis and male infertility. Male Infertility: Contemporary Clinical Approaches, Andrology, ART and Antioxidants, 479-486. https://doi.org/10.1007/978-3-030-32300-4_37
-
Li, H., Bian, Y. L., Schreurs, N., Zhang, X. G., Raza, S. H. A., Fang, Q., & Hu, J. H. (2018). Effects of five cryoprotectants on proliferation and differentiation‐related gene expression of frozen‐thawed bovine calf testicular tissue. Reproduction in Domestic Animals, 53(5), 1211-1218. https://doi.org/10.1111/rda.13228
-
Lima, D. B. C., & Silva, L. D. M. D. (2017). Cryopreservation of testicular tissue: an alternative to maintain the reproductive capacity in different animal species. Ciência Rural, 47, e20170135. https://doi.org/10.1590/0103-8478cr20170135
-
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
-
Mahfouz, R. Z., Sharma, R. K., Poenicke, K., Jha, R., Paasch, U., Grunewald, S., & Agarwal, A. (2009). Evaluation of poly (ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertility and Sterility, 91(5), 2210-2220. https://doi.org/10.1016/j.fertnstert.2008.02.173
-
Martins CF, Rumpf R, Pereira DC, & Dode MN (2007) Cryopreservation of epididymal bovine spermatozoa from dead animals and its uses in vitro embryo production. Animal Reproduction Science, 101, 326–331. https://doi.org/10.1016/j.anireprosci.2007.01.018
-
Martins, C. F., Silva, A. F., Dode, M. N., Rumpf, R., Cumpa, H. C. B., Silva, C. G., & Pivato, I. (2015). Morphological characterization and conservation of bovine spermatogenic cells by refrigeration at 4 C and freezing using different cryoprotective molecules. Cryobiology, 71(1), 47-53. https://doi.org/10.1016/j.cryobiol.2015.06.003
-
Nazari, H., Ahmadi, E., Hosseini Fahraji, H., Afzali, A., & Davoodian, N. (2021). Cryopreservation and its effects on motility and gene expression patterns and fertilizing potential of bovine epididymal sperm. Veterinary Medicine and Science, 7(1), 127-135. https://doi.org/10.1002/vms3.355
-
Nichi, M., Rijsselaere, T., Losano, J. D. A., Angrimani, D. D. S. R., Kawai, G. K. V., Goovaerts, I. G. F., & Bols, P. E. J. (2017). Evaluation of epididymis storage temperature and cryopreservation conditions for improved mitochondrial membrane potential, membrane integrity, sperm motility and in vitro fertilization in bovine epididymal sperm. Reproduction in Domestic Animals, 52(2), 257-263. https://doi.org/10.1111/rda.12888
-
Nixon, B., Schjenken, J. E., Burke, N. D., Skerrett-Byrne, D. A., Hart, H. M., De Iuliis, G. N., & Bromfield, E. G. (2023). New horizons in human sperm selection for assisted reproduction. Frontiers in Endocrinology, 14, 1145533. https://doi.org/10.3389/fendo.2023.1145533
-
Nur, Z., & Ak, K. (2003). Donmuş Spermanın Saklanması ve Eritilmesi (Storing and Thawing of Frozen Semen). Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 22(1-2- 3).
-
Ojo, O. A., Nwafor-Ezeh, P. I., Rotimi, D. E., Iyobhebhe, M., Ogunlakin, A. D., & Ojo, A. B. (2023). Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicology Reports, 10, 448-462. https://doi.org/10.1016/j.toxrep.2023.04.006
-
Oliveira, E. C. S. (2015). Cryopreservation of testicular tissue. Revista Brasileira de Reprodução Animal, 39(1), 109-110.
-
Papa, P. M., Papa, F. O., Oliveira, L. A., Guasti, P. N., Castilho, C., & Giometti, I. C. (2015). Different extenders in the cryopreservation of bovine epididymal spermatozoa. Animal Reproduction Science, 161, 58-63. https://doi.org/10.1016/j.anireprosci.2015.08.004
-
Picazo, C. M., Castaño, C., Bóveda, P., Toledano-Díaz, A., Velázquez, R., Pequeño, B., & Santiago-Moreno, J. (2022). Cryopreservation of testicular tissue from the dog (Canis familiaris) and wild boar (Sus scrofa) by slow freezing and vitrification: differences in cryoresistance according to cell type. Theriogenology, 190, 65-72. https://doi.org/10.1016/j.theriogenology.2022.07.020
-
Pukazhenthi, B. S., Nagashima, J., Travis, A. J., Costa, G. M., Escobar, E. N., França, L. R., & Wildt, D. E. (2015). Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts. PLoS One, 10(4), e0123957. https://doi.org/10.1371/journal.pone.0123957
-
Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(12), 2977-2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
-
Rodriguez, I., Ody, C., Araki, K., Garcia, I., & Vassalli, P. (1997). An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. The EMBO journal. https://doi.org/10.1093/emboj/16.9.2262
-
Rotgers, E., Nurmio, M., Pietilä, E., Cisneros‐Montalvo, S., & Toppari, J. (2015). E2F1 controls germ cell apoptosis during the first wave of spermatogenesis. Andrology, 3(5), 1000-1014. https://doi.org/10.1111/andr.12090
-
Said, T. M., Paasch, U., Glander, H. J., & Agarwal, A. (2004). Role of caspases in male infertility. Human reproduction update, 10(1), 39-51. https://doi.org/10.1093/humupd/dmh003
-
Thomas, C. A., Garner, D. L., DeJarnette, J. M., & Marshall, C. E. (1998). Effect of cryopreservation on bovine sperm organelle function and viability as determined by flow cytometry. Biology of reproduction, 58(3), 786-793. https://doi.org/10.1095/biolreprod58.3.786
-
Tournaye, H., Verheyen, G., & Goossens, E. (2016). Testicular Tissue Cryopreservation. Gonadal Tissue Cryopreservation in Fertility Preservation, 141-148.
-
Travers, A., Milazzo, J. P., Perdrix, A., Metton, C., Bironneau, A., Mace, B., & Rives, N. (2011). Assessment of freezing procedures for rat immature testicular tissue. Theriogenology, 76(6), 981-990. https://doi.org/10.1016/j.theriogenology.2011.04.025
-
Unni, S., Kasiviswanathan, S., D’Souza, S., Khavale, S., Mukherjee, S., Patwardhan, S., & Bhartiya, D. (2012). Efficient cryopreservation of testicular tissue: effect of age, sample state, and concentration of cryoprotectant. Fertility and Sterility, 97(1), 200- 208. https://doi.org/10.1016/j.fertnstert.2011.10.018
-
Wagner, H., Cheng, J. W., & Ko, E. Y. (2018). Role of reactive oxygen species in male infertility: An updated review of literature. Arab Journal of Urology, 16(1), 35-43. https://doi.org/10.1016/j.aju.2017.11.001
-
Woelders, H., & Chaveiro, A. (2004). Theoretical prediction of ‘optimal’freezing programmes. Cryobiology, 49(3), 258-271. https://doi.org/10.1016/j.cryobiol.2004.09.001
-
Wu, J., Hu, T., Guo, B., Yue, Z., Yang, Z., & Zhang, X. (2011). Cryopreservation of adult bovine testicular tissue for spermatogonia enrichment. CryoLetters, 32(5), 402-409.
-
Zhang, X. G., Li, H., & Hu, J. H. (2017). Effects of various cryoprotectants on the quality of frozen–thawed immature bovine (Qinchuan cattle) calf testicular tissue. Andrologia, 49(9), e12743. https://doi.org/10.1111/and.12743
Kriyoprezervasyonun Boğa Testis Dokusu ve Epididimal Spermasındaki Kaspaz-3 Gen Ekspresyonu, Hücre Canlılığı ve Sperm Hareketliliği Üzerindeki Etkisi
Year 2025,
Volume: 10 Issue: 2, 496 - 503, 31.08.2025
Cumali Kaya
,
Burcu Esin
,
Cansu Can
,
Eda Turgut Uğurtay
,
Mesut Çevik
Abstract
Bu çalışmada, boğalarda testis dokusu ve epididimal sperma kriyoprezervasyonunun spermatolojik parametreler, hücre canlılığı ve apoptozis belirteci olan kaspaz-3 gen ekspresyonu üzerine etkileri araştırılmıştır. Boğalardan toplanan testislerden elde edilen epididimal sperma ve testis dokusu parçaları (n: 15) kriyoprezervasyon sonrasında sıvı nitrojende (-196 °C) saklanmıştır. Epididimal sperma payet yöntemi kullanılarak sıvı nitrojen buharında dondurulurken, testis dokusu parçaları kriyoprotektan olarak Dimetilsülfoksit (DMSO) ve Etilen Glikol (EG) içeren kriyotüplerde yavaş dondurma protokolü kullanılarak dondurulmuştur. Taze sperma, çözüm sonrası örneklere kıyasla önemli ölçüde daha yüksek motilite, progresif motilite, kinematik parametreler ve canlılık değerleri göstermiştir (P < 0,05). DMSO ile kriyoprezerve edilen testis dokularında (53.72 ± 6.36), EG ile kriyoprezerve edilen testis dokularına (41.83 ± 7.22) kıyasla daha yüksek hücre canlılığı elde edildi (P < 0.05). Kaspaz-3 gen ekspresyonunun çözüm sonrası DMSO grubundaki dokularda 42.66 ± 98.26 kat, EG grubundaki dokularda ise 65.05 ± 106.03 kat arttığı belirlendi. Epididimal spermade gen ekspresyon düzeyleri taze spermaya kıyasla çözüm sonrası spermada ortalama 12.22 ± 34.60 kat arttı. Bu bulgular kriyoprezervasyonun hücre bütünlüğünü etkilediğini ve apoptotik yolları ve onarım mekanizmalarını tetiklediğini düşündürerek, kriyo hasarı azaltmak ve çözüm sonrası canlılığı artırmak için protokolleri optimize etme ihtiyacını vurgulamaktadır.
References
-
Aitken, R. J., Findlay, J. K., Hutt, K. J., & Kerr, J. B. (2011). Apoptosis in the germ line. Reproduction, 141(2), 139. https://doi.org/10.1530/REP-10-0232
-
Akal, E., Akar, M., & Kaya C. (2021). Mandalarda Epididimal Spermanın Eldesi ve Kriyoprezervasyonu, Turkiye Klinikleri Reproduction and Artificial Insemination- Special Topics, 7, 16–22.
-
Bejarano, I., Rodríguez, A. B., & Pariente, J. A. (2018). Apoptosis is a demanding selective tool during the development of fetal male germ cells. Frontiers in Cell and Developmental biology, 6, 65.
https://doi.org/10.3389/fcell.2018.00065
-
Buarpung, S., Tharasanit, T., Comizzoli, P., & Techakumphu, M. (2013). Feline spermatozoa from fresh and cryopreserved testicular tissues have comparable ability to fertilize matured oocytes and sustain the embryo development after intracytoplasmic sperm injection. Theriogenology, 79(1), 149-158.
https://doi.org/10.1016/j.theriogenology.2012.09.022
-
Bucak, M. N., Ataman, M. B., Başpınar, N., Uysal, O., Taşpınar, M., Bilgili, A., & Akal, E. (2015). Lycopene and resveratrol improve post‐thaw bull sperm parameters: sperm motility, mitochondrial activity and DNA integrity. Andrologia, 47(5), 545-552. https://doi.org/10.1111/and.12301
-
Cai, H., Wu, J. Y., An, X. L., Zhao, X. X., Wang, Z. Z., Tang, B., & Zhang, X. M. (2016). Enrichment and culture of spermatogonia from cryopreserved adult bovine testis tissue. Animal Reproduction Science, 166, 109-115. https://doi.org/10.1016/j.anireprosci.2016.01.009
-
Cayli, S., Sakkas, D., Vigue, L., Demir, R., & Huszar, G. (2004). Cellular maturity and apoptosis in human sperm: creatine kinase, caspase‐3 and Bcl‐XL levels in mature and diminished maturity sperm. MHR: Basic Science of Reproductive Medicine, 10(5), 365-372. https://doi.org/10.1093/molehr/gah050
-
Chaveiro, A., Cerqueira, C., Silva, J., Franco, J., & da Silva, F. M. (2015). Evaluation of frozen thawed kauda epididymal sperms and in vitro fertilizing potential of bovine sperm collected from the kauda epididymal. Iranian Journal of Veterinary Research, 16(2), 188.
-
Chicaiza-Cabezas, N., Garcia-Herreros, M., & Aponte, P. M. (2023). Germplasm cryopreservation in bulls: Effects of gonadal tissue type, cryoprotectant agent, and freezing-thawing rates on sperm quality parameters. Cryobiology, 110, 24-35. https://doi.org/10.1016/j.cryobiol.2023.01.001
-
Dalal, J., Kumar, A., Honparkhe, M., & Brar, P. S. (2019). Effect of Z-IETD-Fmk (Caspase Inhibitor) supplementation on apoptosis like changes developed in buffalo bull sperm during cryopreservation. International Journal of Current Microbiology and Applied Sciences, 8(02), 516-524. https://doi.org/10.20546/ijcmas.2019.802.059
-
Demirci, E., & Selcuk, M. (2021). Epididimal manda spermasının dondurulmasında spermaya katılan farklı sulandırıcıların spermatolojik parametreler üzerine etkisinin in-vitro değerlendirilmesi. Veteriner Hekimler Derneği Dergisi, 94(1), 1-10. https://doi.org/10.33188/%20vetheder.1082675
-
Emokpae, M. A., & Chima, H. N. (2018). Effect of senescence on some apoptosis and oxidative stress markers in infertile normozospermic and oligospermic men: A cross-sectional study. International Journal of Reproductive Biomedicine, 16(7), 435.
-
Evenson, D. P., Darzynkiewicz, Z., & Melamed, M. R. (1982). Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. Journal of Histochemistry & Cytochemistry, 30(3), 279-280. https://doi.org/10.1177/30.3.6174566
-
Gehrmann, W., Elsner, M., & Lenzen, S. (2010). Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β‐cells. Diabetes, Obesity and Metabolism, 12, 149-158. https://doi.org/10.1111/j.1463-1326.2010.01265.x
-
Goovaerts, I. G. F., Hoflack, G. G., Van Soom, A., Dewulf, J., Nichi, M., de Kruif, A., & Bols, P. E. J. (2006). Evaluation of epididymal semen quality using the Hamilton–Thorne analyser indicates variation between the two kaudae epididymides of the same bull. Theriogenology, 66(2), 323-330.
https://doi.org/10.1016/j.theriogenology.2005.11.018
-
Graham, J. K., & Moce, E. (2005). Fertility evaluation of frozen/thawed semen. Theriogenology, 64(3), 492-504. https://doi.org/10.1016/j.theriogenology.2005.05.006
-
Isachenko, E., Isachenko, V., Katkov, I. I., Dessole, S., & Nawroth, F. (2003). Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reproductive Biomedicine Online, 6(2), 191-200. https://doi.org/10.1016/S1472-6483(10)61710-5
-
Kaya, C., Esin, B., Akar, M., Can, C., & Çevik, M. (2024). Investigation of the efficacy of different cryoprotectants in the freezing of testicular tissue and epididymal sperm: Spermatological parameters, tissue viability and PARP-1 gene expression. Cryobiology, 117, 104982. https://doi.org/10.1016/j.cryobiol.2024.104982
-
Keros, V., Rosenlund, B., Hultenby, K., Aghajanova, L., Levkov, L., & Hovatta, O. (2005). Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Human Reproduction, 20(6), 1676-1687. https://doi.org/10.1093/humrep/deh797
-
Latchoumycandane, C., Vaithinathan, S., D’Cruz, S. C., & Mathur, P. P. (2020). Apoptosis and male infertility. Male Infertility: Contemporary Clinical Approaches, Andrology, ART and Antioxidants, 479-486. https://doi.org/10.1007/978-3-030-32300-4_37
-
Li, H., Bian, Y. L., Schreurs, N., Zhang, X. G., Raza, S. H. A., Fang, Q., & Hu, J. H. (2018). Effects of five cryoprotectants on proliferation and differentiation‐related gene expression of frozen‐thawed bovine calf testicular tissue. Reproduction in Domestic Animals, 53(5), 1211-1218. https://doi.org/10.1111/rda.13228
-
Lima, D. B. C., & Silva, L. D. M. D. (2017). Cryopreservation of testicular tissue: an alternative to maintain the reproductive capacity in different animal species. Ciência Rural, 47, e20170135. https://doi.org/10.1590/0103-8478cr20170135
-
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
-
Mahfouz, R. Z., Sharma, R. K., Poenicke, K., Jha, R., Paasch, U., Grunewald, S., & Agarwal, A. (2009). Evaluation of poly (ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertility and Sterility, 91(5), 2210-2220. https://doi.org/10.1016/j.fertnstert.2008.02.173
-
Martins CF, Rumpf R, Pereira DC, & Dode MN (2007) Cryopreservation of epididymal bovine spermatozoa from dead animals and its uses in vitro embryo production. Animal Reproduction Science, 101, 326–331. https://doi.org/10.1016/j.anireprosci.2007.01.018
-
Martins, C. F., Silva, A. F., Dode, M. N., Rumpf, R., Cumpa, H. C. B., Silva, C. G., & Pivato, I. (2015). Morphological characterization and conservation of bovine spermatogenic cells by refrigeration at 4 C and freezing using different cryoprotective molecules. Cryobiology, 71(1), 47-53. https://doi.org/10.1016/j.cryobiol.2015.06.003
-
Nazari, H., Ahmadi, E., Hosseini Fahraji, H., Afzali, A., & Davoodian, N. (2021). Cryopreservation and its effects on motility and gene expression patterns and fertilizing potential of bovine epididymal sperm. Veterinary Medicine and Science, 7(1), 127-135. https://doi.org/10.1002/vms3.355
-
Nichi, M., Rijsselaere, T., Losano, J. D. A., Angrimani, D. D. S. R., Kawai, G. K. V., Goovaerts, I. G. F., & Bols, P. E. J. (2017). Evaluation of epididymis storage temperature and cryopreservation conditions for improved mitochondrial membrane potential, membrane integrity, sperm motility and in vitro fertilization in bovine epididymal sperm. Reproduction in Domestic Animals, 52(2), 257-263. https://doi.org/10.1111/rda.12888
-
Nixon, B., Schjenken, J. E., Burke, N. D., Skerrett-Byrne, D. A., Hart, H. M., De Iuliis, G. N., & Bromfield, E. G. (2023). New horizons in human sperm selection for assisted reproduction. Frontiers in Endocrinology, 14, 1145533. https://doi.org/10.3389/fendo.2023.1145533
-
Nur, Z., & Ak, K. (2003). Donmuş Spermanın Saklanması ve Eritilmesi (Storing and Thawing of Frozen Semen). Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 22(1-2- 3).
-
Ojo, O. A., Nwafor-Ezeh, P. I., Rotimi, D. E., Iyobhebhe, M., Ogunlakin, A. D., & Ojo, A. B. (2023). Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicology Reports, 10, 448-462. https://doi.org/10.1016/j.toxrep.2023.04.006
-
Oliveira, E. C. S. (2015). Cryopreservation of testicular tissue. Revista Brasileira de Reprodução Animal, 39(1), 109-110.
-
Papa, P. M., Papa, F. O., Oliveira, L. A., Guasti, P. N., Castilho, C., & Giometti, I. C. (2015). Different extenders in the cryopreservation of bovine epididymal spermatozoa. Animal Reproduction Science, 161, 58-63. https://doi.org/10.1016/j.anireprosci.2015.08.004
-
Picazo, C. M., Castaño, C., Bóveda, P., Toledano-Díaz, A., Velázquez, R., Pequeño, B., & Santiago-Moreno, J. (2022). Cryopreservation of testicular tissue from the dog (Canis familiaris) and wild boar (Sus scrofa) by slow freezing and vitrification: differences in cryoresistance according to cell type. Theriogenology, 190, 65-72. https://doi.org/10.1016/j.theriogenology.2022.07.020
-
Pukazhenthi, B. S., Nagashima, J., Travis, A. J., Costa, G. M., Escobar, E. N., França, L. R., & Wildt, D. E. (2015). Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts. PLoS One, 10(4), e0123957. https://doi.org/10.1371/journal.pone.0123957
-
Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(12), 2977-2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
-
Rodriguez, I., Ody, C., Araki, K., Garcia, I., & Vassalli, P. (1997). An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. The EMBO journal. https://doi.org/10.1093/emboj/16.9.2262
-
Rotgers, E., Nurmio, M., Pietilä, E., Cisneros‐Montalvo, S., & Toppari, J. (2015). E2F1 controls germ cell apoptosis during the first wave of spermatogenesis. Andrology, 3(5), 1000-1014. https://doi.org/10.1111/andr.12090
-
Said, T. M., Paasch, U., Glander, H. J., & Agarwal, A. (2004). Role of caspases in male infertility. Human reproduction update, 10(1), 39-51. https://doi.org/10.1093/humupd/dmh003
-
Thomas, C. A., Garner, D. L., DeJarnette, J. M., & Marshall, C. E. (1998). Effect of cryopreservation on bovine sperm organelle function and viability as determined by flow cytometry. Biology of reproduction, 58(3), 786-793. https://doi.org/10.1095/biolreprod58.3.786
-
Tournaye, H., Verheyen, G., & Goossens, E. (2016). Testicular Tissue Cryopreservation. Gonadal Tissue Cryopreservation in Fertility Preservation, 141-148.
-
Travers, A., Milazzo, J. P., Perdrix, A., Metton, C., Bironneau, A., Mace, B., & Rives, N. (2011). Assessment of freezing procedures for rat immature testicular tissue. Theriogenology, 76(6), 981-990. https://doi.org/10.1016/j.theriogenology.2011.04.025
-
Unni, S., Kasiviswanathan, S., D’Souza, S., Khavale, S., Mukherjee, S., Patwardhan, S., & Bhartiya, D. (2012). Efficient cryopreservation of testicular tissue: effect of age, sample state, and concentration of cryoprotectant. Fertility and Sterility, 97(1), 200- 208. https://doi.org/10.1016/j.fertnstert.2011.10.018
-
Wagner, H., Cheng, J. W., & Ko, E. Y. (2018). Role of reactive oxygen species in male infertility: An updated review of literature. Arab Journal of Urology, 16(1), 35-43. https://doi.org/10.1016/j.aju.2017.11.001
-
Woelders, H., & Chaveiro, A. (2004). Theoretical prediction of ‘optimal’freezing programmes. Cryobiology, 49(3), 258-271. https://doi.org/10.1016/j.cryobiol.2004.09.001
-
Wu, J., Hu, T., Guo, B., Yue, Z., Yang, Z., & Zhang, X. (2011). Cryopreservation of adult bovine testicular tissue for spermatogonia enrichment. CryoLetters, 32(5), 402-409.
-
Zhang, X. G., Li, H., & Hu, J. H. (2017). Effects of various cryoprotectants on the quality of frozen–thawed immature bovine (Qinchuan cattle) calf testicular tissue. Andrologia, 49(9), e12743. https://doi.org/10.1111/and.12743