Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 3 Sayı: 2, 61 - 68, 30.12.2021
https://doi.org/10.53093/mephoj.1036301

Öz

Proje Numarası

This research was supported by Mersin University Scientific Research Project (BAP), Project no: 2020-1-AP5-4071

Kaynakça

  • Alptekin A & Yakar M (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • Alptekin A, Çelik M Ö, Doğan Y & Yakar M (2019). Mapping of a rockfall site with an unmanned aerial vehicle. Mersin Photogrammetry Journal, 1(1), 12-16.
  • Bailey T & Durrant-Whyte H (2016). Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 13, 108–117.
  • Balenović I, Liang X, Jurjević L, Hyyppä J, Seletković A & Kukko A (2021). Hand-Held Personal Laser Scanning – Current Status and Perspectives for Forest Inventory Application. Croatian Journal of Forest Engineering, 42(1), 165-183. https://doi: 10.5552/crojfe.2021.858
  • Barazzetti L, Binda L, Scaioni M, Taranto P (2011). Photogrammetric survey of complex geometries with low-cost software: Application to the ‘G1’ temple in Myson, Vietnam. Journal of Cultural Heritage, 12, 253-262, DOI: 10.1016/j.culher.2010.12.004
  • Bui D T, Long N Q, Bui X N, Nguyen V N, Van Pham C, Van Le C, Kristoffersen B (2017). Lightweight unmanned aerial vehicle and structure-from-motion photogrammetry for generating digital surface model for openpit coal mine area and its accuracy assessment. In International Conference on Geo-Spatial Technologies and Earth Resources, Springer, Cham, 17-33.
  • Clapuyt F V & Vanacker K Van Oost (2015). “Reproducibility of UAV-based Earth Topography Reconstructions Based on Structure-from-motion Algorithms.” Geomorphology 260: 4–15. doi:10.1016/j.geomorph.2015.05.011.
  • Fonstad M A, J T Dietrich, B C. Courville J L, Jensen, and P. E. Carbonneau. (2013). Topographic Structure from Motion: A New Development in Photogrammetric Measurement. Earth Surface Processes and Landforms 38 (4): 421–430. doi:10.1002/esp.3366.
  • Gonçalves J A & Henriques R (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.
  • Hugenholtz C H K, Whitehead O W, Brown T E, Barchyn B J, Moorman A, Leclair K, Riddell & T Hamilton (2013). Geomorphological Mapping with a Small Unmanned Aircraft System (SUAS): Feature Detection and Accuracy Assessment of a Photogrammetrically-derived Digital Terrain Model. Geomorphology 194: 16–24. doi:10.1016/j.geomorph.2013.03.023.
  • Hyyppä E, Yu X, Kaartinen H, Hakala T, Kukko A, Vastaranta M & Hyyppä J (2020). Comparison of Backpack, Handheld, Under-Canopy UAV, and Above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests. Remote Sensing, 12(20), 3327. https://doi.org/10.3390/rs12203327
  • Karataş K & Bıyık C (2008/2). Jeodezi, Jeoinformasyon ve Arazi yönetimi dergisi, Sayı,99, 5-11
  • Maset E, Cucchiaro S, Cazorzi F, Crosilla F, Fusiello A & Beinat A (2021/a). Investigating The Performance of a Handheld Mobıle Mapping System in Different Outdoor Scenarios. XXIV ISPRS Congress. https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-103-2021
  • Maset E, Scalera L, Beinat A, Cazorzi F, Crosilla F, Fusiello A & Gasparetto A (2021/b). Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_32
  • Mırdan O & Yakar M (2017). Tarihi Eserlerin İnsansız Hava Aracı ile Modellenmesinde Karşılaşılan Sorunlar. Geomatik, 2 (3), 118-125. DOI: 10.29128/geomatik.306914
  • Peterman V (2015). Landslide activity monitoring with the help of unmanned aerial vehicle. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1/W4), 215-218.
  • Qu Y, Huang J & Zhang X (2018). Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera. Sensors, 18: 225.
  • Tang J, Chen Y, Chen L, Liu J, Hyyppä J, Kukko A, Chen R (2015). Fast fingerprint database maintenance for indoor positioning based on UGV SLAM. Sensors, 15, 5311–5330.
  • Tonkin T N, Midgley N G, Graham D J & Labadz J C (2014). The Potential of Small Unmanned Aircraft Systems and Structure-from-motion for Topographic Surveys: A Test of Emerging Integrated Approaches at Cwm Idwal, North Wales. Geomorphology 226: 35–43. doi:10.1016/j. geomorph.2014.07.021.
  • URL-1: https://gexcel.it/en/solutions/heron-portable-3d-mapping-system (15.11.2021)
  • Ünel F B, Kuşak L, Çelik M Ö, Alptekin A & Yakar M (2020). Kıyı Çizgisinin Belirlenerek Mülkiyet Durumunun İncelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40.
  • Volovodova A V & Kulik E N (2020). Using Mobile Laser Scanning Data for Formation of Spatial Base for Monıtoring of Cultural Heritage Objects. UDC Handbook,528:7:528.8. https://10.33764/2618-981X-2020-6-1-80-86
  • Westoby M J, Brasington J, Glasser N F, Hambrey M J, Reynolds J M (2012). Structure-from-Motion’ photogrammetry: A lowcost, effective tool for geoscience applications. Geomorphology, 179, 300-314, DOI: 10.1016/j.geomorph.2012.08.021
  • Yakar M, Orhan O, Ulvi A, Yiğit A Y & Yüzer M M (2015). Sahip Ata Külliyesi Rölöve Örneği. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Zeybek M (2021). Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods. Measurement Science and Technology

Detection of existing infrastructure lines with wearable laser scanners and making infrastructure map: a case of Mersin University

Yıl 2021, Cilt: 3 Sayı: 2, 61 - 68, 30.12.2021
https://doi.org/10.53093/mephoj.1036301

Öz

Technological developments have shown themselves in the field of engineering as in every field. Wearable mobile laser scanner (WMLS) system is a technique based on simultaneous localization and mapping (SLAM) algorithm. This technique enables the creation of a map of an unknown environment bypassing with distance sensors while simultaneously determining the system located on the map. Due to the rapid progress in measurement technology, a heron WMLS has been used in the detection of underground lines. The point cloud of the roads was obtained with the laser scanner. Sewerage, water, and natural gas pipelines were determined through the point cloud. These determinations were checked with a Global Positioning System (GPS) device. As a result of this study, maps of the existing infrastructure lines in the campus were created.

Destekleyen Kurum

MERSİN UNIVERSITY

Proje Numarası

This research was supported by Mersin University Scientific Research Project (BAP), Project no: 2020-1-AP5-4071

Kaynakça

  • Alptekin A & Yakar M (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • Alptekin A, Çelik M Ö, Doğan Y & Yakar M (2019). Mapping of a rockfall site with an unmanned aerial vehicle. Mersin Photogrammetry Journal, 1(1), 12-16.
  • Bailey T & Durrant-Whyte H (2016). Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 13, 108–117.
  • Balenović I, Liang X, Jurjević L, Hyyppä J, Seletković A & Kukko A (2021). Hand-Held Personal Laser Scanning – Current Status and Perspectives for Forest Inventory Application. Croatian Journal of Forest Engineering, 42(1), 165-183. https://doi: 10.5552/crojfe.2021.858
  • Barazzetti L, Binda L, Scaioni M, Taranto P (2011). Photogrammetric survey of complex geometries with low-cost software: Application to the ‘G1’ temple in Myson, Vietnam. Journal of Cultural Heritage, 12, 253-262, DOI: 10.1016/j.culher.2010.12.004
  • Bui D T, Long N Q, Bui X N, Nguyen V N, Van Pham C, Van Le C, Kristoffersen B (2017). Lightweight unmanned aerial vehicle and structure-from-motion photogrammetry for generating digital surface model for openpit coal mine area and its accuracy assessment. In International Conference on Geo-Spatial Technologies and Earth Resources, Springer, Cham, 17-33.
  • Clapuyt F V & Vanacker K Van Oost (2015). “Reproducibility of UAV-based Earth Topography Reconstructions Based on Structure-from-motion Algorithms.” Geomorphology 260: 4–15. doi:10.1016/j.geomorph.2015.05.011.
  • Fonstad M A, J T Dietrich, B C. Courville J L, Jensen, and P. E. Carbonneau. (2013). Topographic Structure from Motion: A New Development in Photogrammetric Measurement. Earth Surface Processes and Landforms 38 (4): 421–430. doi:10.1002/esp.3366.
  • Gonçalves J A & Henriques R (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.
  • Hugenholtz C H K, Whitehead O W, Brown T E, Barchyn B J, Moorman A, Leclair K, Riddell & T Hamilton (2013). Geomorphological Mapping with a Small Unmanned Aircraft System (SUAS): Feature Detection and Accuracy Assessment of a Photogrammetrically-derived Digital Terrain Model. Geomorphology 194: 16–24. doi:10.1016/j.geomorph.2013.03.023.
  • Hyyppä E, Yu X, Kaartinen H, Hakala T, Kukko A, Vastaranta M & Hyyppä J (2020). Comparison of Backpack, Handheld, Under-Canopy UAV, and Above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests. Remote Sensing, 12(20), 3327. https://doi.org/10.3390/rs12203327
  • Karataş K & Bıyık C (2008/2). Jeodezi, Jeoinformasyon ve Arazi yönetimi dergisi, Sayı,99, 5-11
  • Maset E, Cucchiaro S, Cazorzi F, Crosilla F, Fusiello A & Beinat A (2021/a). Investigating The Performance of a Handheld Mobıle Mapping System in Different Outdoor Scenarios. XXIV ISPRS Congress. https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-103-2021
  • Maset E, Scalera L, Beinat A, Cazorzi F, Crosilla F, Fusiello A & Gasparetto A (2021/b). Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_32
  • Mırdan O & Yakar M (2017). Tarihi Eserlerin İnsansız Hava Aracı ile Modellenmesinde Karşılaşılan Sorunlar. Geomatik, 2 (3), 118-125. DOI: 10.29128/geomatik.306914
  • Peterman V (2015). Landslide activity monitoring with the help of unmanned aerial vehicle. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1/W4), 215-218.
  • Qu Y, Huang J & Zhang X (2018). Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera. Sensors, 18: 225.
  • Tang J, Chen Y, Chen L, Liu J, Hyyppä J, Kukko A, Chen R (2015). Fast fingerprint database maintenance for indoor positioning based on UGV SLAM. Sensors, 15, 5311–5330.
  • Tonkin T N, Midgley N G, Graham D J & Labadz J C (2014). The Potential of Small Unmanned Aircraft Systems and Structure-from-motion for Topographic Surveys: A Test of Emerging Integrated Approaches at Cwm Idwal, North Wales. Geomorphology 226: 35–43. doi:10.1016/j. geomorph.2014.07.021.
  • URL-1: https://gexcel.it/en/solutions/heron-portable-3d-mapping-system (15.11.2021)
  • Ünel F B, Kuşak L, Çelik M Ö, Alptekin A & Yakar M (2020). Kıyı Çizgisinin Belirlenerek Mülkiyet Durumunun İncelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40.
  • Volovodova A V & Kulik E N (2020). Using Mobile Laser Scanning Data for Formation of Spatial Base for Monıtoring of Cultural Heritage Objects. UDC Handbook,528:7:528.8. https://10.33764/2618-981X-2020-6-1-80-86
  • Westoby M J, Brasington J, Glasser N F, Hambrey M J, Reynolds J M (2012). Structure-from-Motion’ photogrammetry: A lowcost, effective tool for geoscience applications. Geomorphology, 179, 300-314, DOI: 10.1016/j.geomorph.2012.08.021
  • Yakar M, Orhan O, Ulvi A, Yiğit A Y & Yüzer M M (2015). Sahip Ata Külliyesi Rölöve Örneği. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Zeybek M (2021). Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods. Measurement Science and Technology
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ali Ulvi 0000-0003-3005-8011

Abdurahman Yasin Yiğit 0000-0002-9407-8022

Mehmet Özgür Çelik 0000-0003-4569-888X

Aydın Alptekin

Proje Numarası This research was supported by Mersin University Scientific Research Project (BAP), Project no: 2020-1-AP5-4071
Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 2

Kaynak Göster

APA Ulvi, A., Yiğit, A. Y., Çelik, M. Ö., Alptekin, A. (2021). Detection of existing infrastructure lines with wearable laser scanners and making infrastructure map: a case of Mersin University. Mersin Photogrammetry Journal, 3(2), 61-68. https://doi.org/10.53093/mephoj.1036301
AMA Ulvi A, Yiğit AY, Çelik MÖ, Alptekin A. Detection of existing infrastructure lines with wearable laser scanners and making infrastructure map: a case of Mersin University. MEPHOJ. Aralık 2021;3(2):61-68. doi:10.53093/mephoj.1036301
Chicago Ulvi, Ali, Abdurahman Yasin Yiğit, Mehmet Özgür Çelik, ve Aydın Alptekin. “Detection of Existing Infrastructure Lines With Wearable Laser Scanners and Making Infrastructure Map: A Case of Mersin University”. Mersin Photogrammetry Journal 3, sy. 2 (Aralık 2021): 61-68. https://doi.org/10.53093/mephoj.1036301.
EndNote Ulvi A, Yiğit AY, Çelik MÖ, Alptekin A (01 Aralık 2021) Detection of existing infrastructure lines with wearable laser scanners and making infrastructure map: a case of Mersin University. Mersin Photogrammetry Journal 3 2 61–68.
IEEE A. Ulvi, A. Y. Yiğit, M. Ö. Çelik, ve A. Alptekin, “Detection of existing infrastructure lines with wearable laser scanners and making infrastructure map: a case of Mersin University”, MEPHOJ, c. 3, sy. 2, ss. 61–68, 2021, doi: 10.53093/mephoj.1036301.
ISNAD Ulvi, Ali vd. “Detection of Existing Infrastructure Lines With Wearable Laser Scanners and Making Infrastructure Map: A Case of Mersin University”. Mersin Photogrammetry Journal 3/2 (Aralık 2021), 61-68. https://doi.org/10.53093/mephoj.1036301.
JAMA Ulvi A, Yiğit AY, Çelik MÖ, Alptekin A. Detection of existing infrastructure lines with wearable laser scanners and making infrastructure map: a case of Mersin University. MEPHOJ. 2021;3:61–68.
MLA Ulvi, Ali vd. “Detection of Existing Infrastructure Lines With Wearable Laser Scanners and Making Infrastructure Map: A Case of Mersin University”. Mersin Photogrammetry Journal, c. 3, sy. 2, 2021, ss. 61-68, doi:10.53093/mephoj.1036301.
Vancouver Ulvi A, Yiğit AY, Çelik MÖ, Alptekin A. Detection of existing infrastructure lines with wearable laser scanners and making infrastructure map: a case of Mersin University. MEPHOJ. 2021;3(2):61-8.