Research Article
BibTex RIS Cite

Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones

Year 2025, Volume: 7 Issue: 2, 68 - 75
https://doi.org/10.53093/mephoj.1721955

Abstract

The rapid advancement of technology frequently leads to the replacement of older machines, devices, and vehicles with newer models. However, many of these older products remain functional and may require spare parts over time. With the release of new models, accessing spare parts for previous generations becomes increasingly difficult, which shortens the lifespan of these products and negatively affects sustainability. One of the most prominent examples in this context is mobile phones. Many components of mobile phones are prone to damage over time due to regular use. However, the rapid circulation of new models and consumption-driven corporate policies restrict access to replacement parts. This study focuses on one of the most frequently damaged components in mobile phones—the side button—and examines the design and production process of this spare part using photogrammetry and 3D printing methods. Furthermore, the study assesses how this approach contributes to sustainability and environmental protection by highlighting the benefits of 3D printing, which allows direct production from digital models and is very cost-effective for small-scale manufacturing, and photogrammetry, which provides an affordable method for obtaining precise geometric data needed in spare part design.

References

  • Mecheter, A., Pokharel, S., & Tarlochan, F. (2022). Additive Manufacturing Technology for Spare Parts Application: A Systematic Review on Supply Chain Management. Applied Sciences, 12(9), 4160. https://doi.org/10.3390/app1209 4160.
  • de Brito, F. M., da Cruz, G., Frazzon, E. M., Basto, J. P. T. V., & Alcalá, S. G. S. (2020). Design approach for additive manufacturing in spare part supply chains. IEEE Transactions on Industrial Informatics, 17(2), 757-765. https://doi.org/10.1109/TII.2020.3029541.
  • Holmström, J., Partanen, J., Tuomi, J. and Walter, M. (2010), "Rapid manufacturing in the spare parts supply chain: Alternative approaches to capacity deployment", Journal of Manufacturing Technology Management, Vol. 21 No. 6, pp. 687-697. https://doi.org/10.1108/1741038101106 3996.
  • Ahlsell, L., Jalal, D., Khajavi, S. H., Jonsson, P., & Holmström, J. (2023). Additive Manufacturing of Slow-Moving Automotive Spare Parts: A Supply Chain Cost Assessment. Journal of Manufacturing and Materials Processing, 7(1), 8. https://doi.org/10.3390/jmmp7010008.
  • Djukanovic, M., Radunovic, L., Vujovic, P., Konatar, A. (2020). Importance of Additive Manufacturing Technology for Startup Launching: A Case Study. New Technologies, Development and Application III Lecture Notes in Networks and Systems, Volume 128, 276-284. https://doi.org/10.1007/978-3-030-468170_ 31.
  • Tao, Z., Ahn, H. J., Lian, C., Lee, K. H. and Lee, C. H. (2017). Design and optimization of prosthetic foot by using polylactic acid 3d printing. Journal of Mechanical Science and Technology, 2393-2398. https://doi.org/10.1007/s12206-017-04 36-2.
  • Singh, N., Colangelo, F., & Farina, I. (2023). Sustainable Non-Conventional Concrete 3D Printing—A Review. Sustainability, 15(13), 10121. https://doi.org/10.3390/su151310121.
  • Kanun, E., Kanun, G. M., & Yakar, M. (2022). 3D modeling of car parts by photogrammetric methods: Example of brake discs. Mersin Photogrammetry Journal, 4(1), 7-13. https://doi.org/10.53093/mephoj.1131619.
  • Rešetar, M., Valjak, F., Branilović, M. G., Šercer, M., & Bojčetić, N. (2024). An approach for reverse engineering and redesign of additive manufactured spare parts. Proceedings of the Design Society, 4, 703-712. https://doi.org/10. 1017/pds.2024.73.
  • Sürmen, H. K., Güven, T. (2024). Design and Fabrication of Custom Nasal Dilator with Reverse Engineering and Additive Manufacturing. Afyon Kocatepe University - Journal of Science and Engineering, 197-206. https://doi.org/10.35414/akufemubid.1332603.
  • Anwer, N., Mathieu, L. (2016). From reverse engineering to shape engineering in mechanical design. Manufacturing Technology, 65(1), 165-168. https://doi.org/10.1016/j.cirp.2016.04.05 2.
  • Buonamici, F. et all. (2018). Reverse engineering of mechanical parts: A template-based approach. Journal of Computational Design and Engineering, 5(2), 145–159. https://doi.org/10. 1016/j.jcde.2017.11.009.
  • Surmen, H. K., Akalan, N. E., Fetvaci, M. C., Arslan, Y. Z. (2018). A novel dorsal trimline approach for passive-dynamic ankle-foot orthoses. Strojniški vestnik-Journal of Mechanical Engineering, 64(3), 185-194. https://doi.org/10.5545/sv-jm e.2017.4987.
  • Paulic, M., Irgolic, T., Balic, J., Cus, F., Cupar, A., Brajlih, T., Drstvensek, I. (2014). Reverse engineering of parts with optical scanning and additive manufacturing. Procedia engineering, 69, 795-803. https://doi.org/10.1016/j.proeng. 2014.03.056.
  • Yilmaz, H. M., Yakar, M., & Yildiz, F. (2008). Digital photogrammetry in obtaining of 3D model data of irregular small objects. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 125-130.
  • Agrawal, K., & Bhat, A. R. (2025). Advances in 3D printing with eco-friendly materials: a sustainable approach to manufacturing. RSC Sustainability, 3(6), 2582-2604. https://doi.org /10.1039/D4SU00718B.
  • Pulat, F., & Yakar, M. (2024). Comparison Of Techniques Used in Three-Dimensional Modelling of Small-Sized Objects with Mobile Phones. Mersin Photogrammetry Journal, 6(2), 79-86. https://doi.org/10.53093/mephoj.1581948.
  • Ozmen, O., & Surmen, H. K. (2024). Design of 3D Printed Below-Knee Prosthetic-A Finite Element and Topology Optimization Study. Strojniški vestnik-Journal of Mechanical Engineering, 70(11-12), 517-530. https://doi.org/10.5545/ sv-jme.2024.1034.
  • Sapkota, A., Ghimire, S. K., & Adanur, S. (2024). A review on fused deposition modeling (FDM)-based additive manufacturing (AM) methods, materials and applications for flexible fabric structures. Journal of Industrial Textiles, 54, 15280837241282110. https://doi.org/10.1177 /15280837241282.
  • Department for Energy Security and Net Zero. (2023). 2023 government greenhouse gas conversion factors for company reporting: Methodology paper. UK Government. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023

Year 2025, Volume: 7 Issue: 2, 68 - 75
https://doi.org/10.53093/mephoj.1721955

Abstract

References

  • Mecheter, A., Pokharel, S., & Tarlochan, F. (2022). Additive Manufacturing Technology for Spare Parts Application: A Systematic Review on Supply Chain Management. Applied Sciences, 12(9), 4160. https://doi.org/10.3390/app1209 4160.
  • de Brito, F. M., da Cruz, G., Frazzon, E. M., Basto, J. P. T. V., & Alcalá, S. G. S. (2020). Design approach for additive manufacturing in spare part supply chains. IEEE Transactions on Industrial Informatics, 17(2), 757-765. https://doi.org/10.1109/TII.2020.3029541.
  • Holmström, J., Partanen, J., Tuomi, J. and Walter, M. (2010), "Rapid manufacturing in the spare parts supply chain: Alternative approaches to capacity deployment", Journal of Manufacturing Technology Management, Vol. 21 No. 6, pp. 687-697. https://doi.org/10.1108/1741038101106 3996.
  • Ahlsell, L., Jalal, D., Khajavi, S. H., Jonsson, P., & Holmström, J. (2023). Additive Manufacturing of Slow-Moving Automotive Spare Parts: A Supply Chain Cost Assessment. Journal of Manufacturing and Materials Processing, 7(1), 8. https://doi.org/10.3390/jmmp7010008.
  • Djukanovic, M., Radunovic, L., Vujovic, P., Konatar, A. (2020). Importance of Additive Manufacturing Technology for Startup Launching: A Case Study. New Technologies, Development and Application III Lecture Notes in Networks and Systems, Volume 128, 276-284. https://doi.org/10.1007/978-3-030-468170_ 31.
  • Tao, Z., Ahn, H. J., Lian, C., Lee, K. H. and Lee, C. H. (2017). Design and optimization of prosthetic foot by using polylactic acid 3d printing. Journal of Mechanical Science and Technology, 2393-2398. https://doi.org/10.1007/s12206-017-04 36-2.
  • Singh, N., Colangelo, F., & Farina, I. (2023). Sustainable Non-Conventional Concrete 3D Printing—A Review. Sustainability, 15(13), 10121. https://doi.org/10.3390/su151310121.
  • Kanun, E., Kanun, G. M., & Yakar, M. (2022). 3D modeling of car parts by photogrammetric methods: Example of brake discs. Mersin Photogrammetry Journal, 4(1), 7-13. https://doi.org/10.53093/mephoj.1131619.
  • Rešetar, M., Valjak, F., Branilović, M. G., Šercer, M., & Bojčetić, N. (2024). An approach for reverse engineering and redesign of additive manufactured spare parts. Proceedings of the Design Society, 4, 703-712. https://doi.org/10. 1017/pds.2024.73.
  • Sürmen, H. K., Güven, T. (2024). Design and Fabrication of Custom Nasal Dilator with Reverse Engineering and Additive Manufacturing. Afyon Kocatepe University - Journal of Science and Engineering, 197-206. https://doi.org/10.35414/akufemubid.1332603.
  • Anwer, N., Mathieu, L. (2016). From reverse engineering to shape engineering in mechanical design. Manufacturing Technology, 65(1), 165-168. https://doi.org/10.1016/j.cirp.2016.04.05 2.
  • Buonamici, F. et all. (2018). Reverse engineering of mechanical parts: A template-based approach. Journal of Computational Design and Engineering, 5(2), 145–159. https://doi.org/10. 1016/j.jcde.2017.11.009.
  • Surmen, H. K., Akalan, N. E., Fetvaci, M. C., Arslan, Y. Z. (2018). A novel dorsal trimline approach for passive-dynamic ankle-foot orthoses. Strojniški vestnik-Journal of Mechanical Engineering, 64(3), 185-194. https://doi.org/10.5545/sv-jm e.2017.4987.
  • Paulic, M., Irgolic, T., Balic, J., Cus, F., Cupar, A., Brajlih, T., Drstvensek, I. (2014). Reverse engineering of parts with optical scanning and additive manufacturing. Procedia engineering, 69, 795-803. https://doi.org/10.1016/j.proeng. 2014.03.056.
  • Yilmaz, H. M., Yakar, M., & Yildiz, F. (2008). Digital photogrammetry in obtaining of 3D model data of irregular small objects. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 125-130.
  • Agrawal, K., & Bhat, A. R. (2025). Advances in 3D printing with eco-friendly materials: a sustainable approach to manufacturing. RSC Sustainability, 3(6), 2582-2604. https://doi.org /10.1039/D4SU00718B.
  • Pulat, F., & Yakar, M. (2024). Comparison Of Techniques Used in Three-Dimensional Modelling of Small-Sized Objects with Mobile Phones. Mersin Photogrammetry Journal, 6(2), 79-86. https://doi.org/10.53093/mephoj.1581948.
  • Ozmen, O., & Surmen, H. K. (2024). Design of 3D Printed Below-Knee Prosthetic-A Finite Element and Topology Optimization Study. Strojniški vestnik-Journal of Mechanical Engineering, 70(11-12), 517-530. https://doi.org/10.5545/ sv-jme.2024.1034.
  • Sapkota, A., Ghimire, S. K., & Adanur, S. (2024). A review on fused deposition modeling (FDM)-based additive manufacturing (AM) methods, materials and applications for flexible fabric structures. Journal of Industrial Textiles, 54, 15280837241282110. https://doi.org/10.1177 /15280837241282.
  • Department for Energy Security and Net Zero. (2023). 2023 government greenhouse gas conversion factors for company reporting: Methodology paper. UK Government. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023
There are 20 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Hasan Kemal Surmen 0000-0001-8045-9193

Ozbil Ozmen 0000-0001-8813-5097

Omar Alsawadi 0009-0005-2839-400X

Publication Date October 14, 2025
Submission Date June 18, 2025
Acceptance Date July 27, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Surmen, H. K., Ozmen, O., & Alsawadi, O. (n.d.). Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones. Mersin Photogrammetry Journal, 7(2), 68-75. https://doi.org/10.53093/mephoj.1721955
AMA Surmen HK, Ozmen O, Alsawadi O. Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones. Mersin Photogrammetry Journal. 7(2):68-75. doi:10.53093/mephoj.1721955
Chicago Surmen, Hasan Kemal, Ozbil Ozmen, and Omar Alsawadi. “Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones”. Mersin Photogrammetry Journal 7, no. 2 n.d.: 68-75. https://doi.org/10.53093/mephoj.1721955.
EndNote Surmen HK, Ozmen O, Alsawadi O Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones. Mersin Photogrammetry Journal 7 2 68–75.
IEEE H. K. Surmen, O. Ozmen, and O. Alsawadi, “Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones”, Mersin Photogrammetry Journal, vol. 7, no. 2, pp. 68–75, doi: 10.53093/mephoj.1721955.
ISNAD Surmen, Hasan Kemal et al. “Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones”. Mersin Photogrammetry Journal 7/2 (n.d.), 68-75. https://doi.org/10.53093/mephoj.1721955.
JAMA Surmen HK, Ozmen O, Alsawadi O. Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones. Mersin Photogrammetry Journal.;7:68–75.
MLA Surmen, Hasan Kemal et al. “Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones”. Mersin Photogrammetry Journal, vol. 7, no. 2, pp. 68-75, doi:10.53093/mephoj.1721955.
Vancouver Surmen HK, Ozmen O, Alsawadi O. Spare Part Fabrication through Photogrammetry and 3D Printing: Exploring Sustainability in Mobile Phones. Mersin Photogrammetry Journal. 7(2):68-75.