Görüntü Sunumu
BibTex RIS Kaynak Göster

Fizik Öğretmen Adaylarının “Yapay Zekâ” Kavramına İlişkin Algılarının İncelenmesi: Bir Metafor Çalışması

Yıl 2023, Cilt: 7 Sayı: 2, 152 - 163, 31.12.2023

Öz

Bu çalışmanın amacı, fizik öğretmen adaylarının “yapay zekâ” kavramına ilişkin algılarını metaforlar
aracılığı ile belirlemektir. Nitel araştırma desenlerinden olgubilim deseninin kullanıldığı bu çalışma, 2022-
2023 bahar yarı yılında Anadolu’da bir üniversitenin fizik öğretmenliği programında öğrenim gören 84
öğretmen adayı üzerinde yürütülmüştür. Fizik öğretmen adaylarının yapay zekâ kavramına ilişkin
metaforik algılarını belirlemek amacıyla, onlardan “Yapay zekâ ………… gibidir, çünkü …………………”
cümlesini tamamlamaları istenmiş ve elde edilen veriler içerik analizine tabi tutulmuştur. Çalışma
sonucunda, fizik öğretmen adaylarının yapay zekâ kavramına ilişkin 49 farklı metafor ürettikleri görülmüş
olup bunlardan frekansları en yüksek olanlar insan, beyin, evren, uzay, kütüphane, makine ve robot
şeklindedir. Üretilen bu metaforlar 9 farklı kategoride toplanmış olup bu kategorilerden öne çıkanlar
genişlik/sınırsızlık, risk/tehlike, insansılık/taklit, işlev/yapı şeklinde oluşmuştur.

Kaynakça

  • Arslan, K. (2017). Eğitimde Yapay Zekâ ve Uygulamaları. Batı Anadolu Eğitim Bilimleri Dergisi, 11(1), 71-88.
  • Avcı, Ü. & Candan, Ö. (2023). Öğretmenlerin bilgi teknolojileri okuryazarlık düzeylerine göre endüstri 4.0 farkındalıklarının incelenmesi. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 5(1), 162-181.
  • Baker, T. & Smith, L. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Retrieved from Nesta Foundation.https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WE B.pdf 22 Mart 2023 tarihinde ulaşılmıştır.
  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.
  • Bozkurt, A. (2023). ChatGPT, ü retken yapay zekâ ve algoritmik paradigma değişikliği. Alanyazın, 4(1),63-72.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.
  • Breazeal, C. (2002). Designing sociable robots. Cambridge, MA: MIT Press.
  • Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
  • Çam, M. B., Çelik, N. C., Turan Gü ntepe, E. & Durukan, Ü. G., (2021). Öğretmen Adaylarının Yapay Zekâ Teknolojileri ile İlgili Farkındalıklarının Belirlenmesi. Hatay Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(48), 263-285.
  • Çetin, İ. & Erdoğan, A. (2018). Development, validity and reliability study of technological pedagogical content knowledge (TPACK) efficiency scale for mathematics teacher candidates. International Journal of Contemporary Educational Research, 5(1), 50-62.
  • Erdoğan, A. (2010). Variables that affect math teacher candidates' intentions to integrate computer assisted mathematics education (CAME). Education, 131(2), 295-305.
  • Erdoğan, A.,Yazlık, O. D. & Erdik, C.(2014). Mathematics teacher candidates’ metaphors about the concept of “mathematics”. International Journal of Education in Mathematics, Science and Technology, 2(4), 289-299.
  • Floridi, L., & Cowls, J. (2019). A Unified Framework of Five Principles for AI in Society. Harvard Data Science Review, 1(1).
  • Gibbs, R. W. (1994). The poetics of mind: Figurative thought, language, and understanding. Cambridge University Press.
  • Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4).
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in education: Promises and implications for teaching and learning. Boston, MA: The Center for Curriculum Redisign.
  • Kalemkuş, F. & Kalemkuş, J. (2023). Fen eğitiminde güncel dijital teknolojiler. Erdoğan, F. (Ed.) Matematik ve Fen Bilimleri Eğitiminde Yeni Yaklaşımlar-2023 (pp. 143-164). İstanbul: Efeakademi Yayınları.
  • Kamilaris, A. & Prenafeta-Boldú, F.X. (2018) Deep Learning in Agriculture: A Survey. Computers and Electronics in Agriculture, 147, 70-90.
  • Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.
  • Loeckx, J. (2016), Blurring boundaries in education: conext and impact of MOOCs.
  • International Review of Research in Open and Distributed Learning, 17(3), 93- 121. Litman, T. (2018). Generated Traffic and Induced Travel. Implications for Transport Planning. Victoria Transport Policy Institute. April 24th, 2018.
  • Marr, B. (2018, July 25). How is AI used in Education—Real World examples of today and a peek into the future. Forbes. Retrived from https://www.forbes.com/sites/bernardmarr/2018/07/25/how-is-ai-used-in-education-real-world-examples-of-today-and-a-peek-into-the-future/?sh=78e59b30586e
  • Nja, C.O., Idiege, K.J., Uwe, U.E. et al. (2023). Adoption of artificial intelligence in science teaching: From the vantage point of the African science teachers. Smart Learn. Environments,10(42).
  • Popenici, S.A.D. & Kerr, S. (2017). Exploring the impact of artificial intellegence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22), 1-13.
  • Roschelle, J., Lester, J. & Fusco, J. (2020). AI and the future of learning: Expert panel report. Digital Promise.
  • Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. London: Pearson. Saban, A. (2006). Functions of metaphors in teaching and teacher education: A review essay. Teaching Education, 17(4), 299-315.
  • Saçan, S., Tozduman-Yaralı, K., & Kavruk, S. Z. (2022). Çocukların “yapay zekâ” kavramına ilişkin metaforik algılarının incelenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 64, 274-296.
  • Sili Kalem, A. (2022). Gündelik Hayatın Dijitalleşmesi Karşısında Sosyoloji. Medeniyet ve Toplum Dergisi, 6 (2), 95-102.
  • Smith, A. & Anderson, J. (2014). AI, Robotics, and the Future of Jobs. Pew Research Center: Internet, Science & Tech. United States of America.
  • Şahin, A. (2021). İnsansız Dü nya: Transhü manizm, Necmettin Erbakan Üniversitesi Medeniyet ve Toplum Dergisi, 5 (2), 191-194.
  • Tongkachok, K., Elkady, G., & Haddad, S. (2022). Effective role of artificial intelligence and chatbots in marketing strategies for decision making for online customers. Business, Managgement and Economics Engineering, 20(2), 1150-1165.
  • Topol, E.J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25, 44–56.
  • Verma, M. (2018). Artificial intelligence and its scope in different areas with special reference to the field of education. International Journal of Advanced Educational Research, 3(1), 5-10.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1- 27.
  • Zhang, C. & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23(2021).

Examining the Perceptions of Prospective Physics Teachers on the Concept of “Artificial Intelligence”: A Metaphor Study

Yıl 2023, Cilt: 7 Sayı: 2, 152 - 163, 31.12.2023

Öz

The aim of this study is to determine the perceptions of prospective physics teachers on the concept of 'artificial intelligence' through metaphors. This study, which uses the phenomenological design among qualitative research patterns, was conducted on 84 teacher candidates studying in the physics teaching program of a university in Anatolia during the 2022-2023 spring semester. In order to determine the metaphorical perceptions of prospective physics teachers regarding the concept of artificial intelligence, they were asked to complete the sentence “Artificial intelligence is like …………, because …………………”, and the data obtained were subjected to content analysis. As a result of the study, it was observed that the prospective physics teachers produced 49 different metaphors related to the concept of artificial intelligence, with the most frequent ones being human, brain, universe, space, library, machine, and robot. These metaphors were categorized into 9 different categories, with the prominent ones being breadth/limitlessness, risk/danger, humanity/imitation, and function/structure.

Kaynakça

  • Arslan, K. (2017). Eğitimde Yapay Zekâ ve Uygulamaları. Batı Anadolu Eğitim Bilimleri Dergisi, 11(1), 71-88.
  • Avcı, Ü. & Candan, Ö. (2023). Öğretmenlerin bilgi teknolojileri okuryazarlık düzeylerine göre endüstri 4.0 farkındalıklarının incelenmesi. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 5(1), 162-181.
  • Baker, T. & Smith, L. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Retrieved from Nesta Foundation.https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WE B.pdf 22 Mart 2023 tarihinde ulaşılmıştır.
  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.
  • Bozkurt, A. (2023). ChatGPT, ü retken yapay zekâ ve algoritmik paradigma değişikliği. Alanyazın, 4(1),63-72.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.
  • Breazeal, C. (2002). Designing sociable robots. Cambridge, MA: MIT Press.
  • Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
  • Çam, M. B., Çelik, N. C., Turan Gü ntepe, E. & Durukan, Ü. G., (2021). Öğretmen Adaylarının Yapay Zekâ Teknolojileri ile İlgili Farkındalıklarının Belirlenmesi. Hatay Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(48), 263-285.
  • Çetin, İ. & Erdoğan, A. (2018). Development, validity and reliability study of technological pedagogical content knowledge (TPACK) efficiency scale for mathematics teacher candidates. International Journal of Contemporary Educational Research, 5(1), 50-62.
  • Erdoğan, A. (2010). Variables that affect math teacher candidates' intentions to integrate computer assisted mathematics education (CAME). Education, 131(2), 295-305.
  • Erdoğan, A.,Yazlık, O. D. & Erdik, C.(2014). Mathematics teacher candidates’ metaphors about the concept of “mathematics”. International Journal of Education in Mathematics, Science and Technology, 2(4), 289-299.
  • Floridi, L., & Cowls, J. (2019). A Unified Framework of Five Principles for AI in Society. Harvard Data Science Review, 1(1).
  • Gibbs, R. W. (1994). The poetics of mind: Figurative thought, language, and understanding. Cambridge University Press.
  • Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4).
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in education: Promises and implications for teaching and learning. Boston, MA: The Center for Curriculum Redisign.
  • Kalemkuş, F. & Kalemkuş, J. (2023). Fen eğitiminde güncel dijital teknolojiler. Erdoğan, F. (Ed.) Matematik ve Fen Bilimleri Eğitiminde Yeni Yaklaşımlar-2023 (pp. 143-164). İstanbul: Efeakademi Yayınları.
  • Kamilaris, A. & Prenafeta-Boldú, F.X. (2018) Deep Learning in Agriculture: A Survey. Computers and Electronics in Agriculture, 147, 70-90.
  • Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.
  • Loeckx, J. (2016), Blurring boundaries in education: conext and impact of MOOCs.
  • International Review of Research in Open and Distributed Learning, 17(3), 93- 121. Litman, T. (2018). Generated Traffic and Induced Travel. Implications for Transport Planning. Victoria Transport Policy Institute. April 24th, 2018.
  • Marr, B. (2018, July 25). How is AI used in Education—Real World examples of today and a peek into the future. Forbes. Retrived from https://www.forbes.com/sites/bernardmarr/2018/07/25/how-is-ai-used-in-education-real-world-examples-of-today-and-a-peek-into-the-future/?sh=78e59b30586e
  • Nja, C.O., Idiege, K.J., Uwe, U.E. et al. (2023). Adoption of artificial intelligence in science teaching: From the vantage point of the African science teachers. Smart Learn. Environments,10(42).
  • Popenici, S.A.D. & Kerr, S. (2017). Exploring the impact of artificial intellegence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22), 1-13.
  • Roschelle, J., Lester, J. & Fusco, J. (2020). AI and the future of learning: Expert panel report. Digital Promise.
  • Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. London: Pearson. Saban, A. (2006). Functions of metaphors in teaching and teacher education: A review essay. Teaching Education, 17(4), 299-315.
  • Saçan, S., Tozduman-Yaralı, K., & Kavruk, S. Z. (2022). Çocukların “yapay zekâ” kavramına ilişkin metaforik algılarının incelenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 64, 274-296.
  • Sili Kalem, A. (2022). Gündelik Hayatın Dijitalleşmesi Karşısında Sosyoloji. Medeniyet ve Toplum Dergisi, 6 (2), 95-102.
  • Smith, A. & Anderson, J. (2014). AI, Robotics, and the Future of Jobs. Pew Research Center: Internet, Science & Tech. United States of America.
  • Şahin, A. (2021). İnsansız Dü nya: Transhü manizm, Necmettin Erbakan Üniversitesi Medeniyet ve Toplum Dergisi, 5 (2), 191-194.
  • Tongkachok, K., Elkady, G., & Haddad, S. (2022). Effective role of artificial intelligence and chatbots in marketing strategies for decision making for online customers. Business, Managgement and Economics Engineering, 20(2), 1150-1165.
  • Topol, E.J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25, 44–56.
  • Verma, M. (2018). Artificial intelligence and its scope in different areas with special reference to the field of education. International Journal of Advanced Educational Research, 3(1), 5-10.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1- 27.
  • Zhang, C. & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23(2021).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Şükran Erdoğan 0000-0002-0894-7376

Ersin Bozkurt 0000-0001-9079-6847

Erken Görünüm Tarihi 31 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 15 Ekim 2023
Kabul Tarihi 12 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 2

Kaynak Göster

APA Erdoğan, Ş., & Bozkurt, E. (2023). Fizik Öğretmen Adaylarının “Yapay Zekâ” Kavramına İlişkin Algılarının İncelenmesi: Bir Metafor Çalışması. Medeniyet Ve Toplum Dergisi, 7(2), 152-163.