Adams, S., Klobodu, E. K. M. ve Apio, A. (2018). Renewable and non-renewable energy, regime type and economic growth. Renewable Energy, 125, 755–767. doi:10.1016/j.renene.2018.02.135
Blazquez, J., Fuentes-Bracamontes, R., Bollino, C. A. and Nezamuddin, N. (2018). The renewable energy policy Paradox. Renewable and Sustainable Energy Reviews, 82(October 2017), 1–5. doi:10.1016/j.rser.2017.09.002
Bouman, E. A., Lindstad, E., Rialland, A. I. and Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52, 408–421. doi:10.1016/j.trd.2017.03.022
Breyer, C., Afanasyeva, S., Brakemeier, D., Engelhard, M., Giuliano, S., Puppe, M., Moser, M. (2017). Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings (C. 1850, s. 160001). AIP Publishing LLC. doi:10.1063/1.4984535
Burke, M. J. and Stephens, J. C. (2018). Political power and renewable energy futures: A critical review. Energy Research and Social Science, 35(November 2017), 78–93. doi:10.1016/j.erss.2017.10.018
Cabrera, P., Lund, H. and Carta, J. A. (2018). Smart renewable energy penetration strategies on islands: The case of Gran Canaria. Energy, 162, 421–443. doi:10.1016/j.energy.2018.08.020
Calleya, J. N. (2014). Ship Design Decision Support for a Carbon Dioxide Constrained Future, 125.
Cames, M., Graichen, J., Siemons, A. and Cook, V. (2015). Emission Reduction Targets for International Aviation and Shipping. European Parliament - Policy Department, (1), 1–52. http://www.europarl.europa.eu/RegData/etudes/STUD/2015/569964/IPOL_STU%282015%29569964_EN.pdf accessed from this website.
Chen, Y., Wang, Z. and Zhong, Z. (2019). CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renewable Energy, 131, 208–216. doi:10.1016/j.renene.2018.07.047
Chong, W. W. F. F., Ng, J. H., Rajoo, S. and Chong, C. T. (2018). Sector of Passenger transportation gasoline consumption due to friction in Southeast Asian countries. Energy Conversion and Management, 158 (November 2017), 346–358. doi:10.1016/j.enconman.2017.12.083
Clean North Sea Shipping Project. (2014). Clean North Sea Shipping Final Report: Key Findings and Recommendations, (March), 92. http://cnss.no/wp-content/uploads/2014/03/CNSS_Final_Report_web.pdf accessed from website.
Connolly, D., Mathiesen, B. V. and Ridjan, I. (2014). A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy, 73, 110–125. doi:10.1016/j.energy.2014.05.104
Deniz, C. and Zincir, B. (2016). Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production, 113(X), 438–449. doi:10.1016/j.jclepro.2015.11.089
Ertay, T., Kahraman, C. and Kaya, İ. (2013). Evaluation of Renewable Energy Alternatives Using Macbeth and Fuzzy Ahp Multicriteria Methods: The Case of Turkey. Technological and Economic Development of Economy, 19(1), 38–62. doi:10.3846/20294913.2012.762950
Eyring, V., Köhler, H. W., Lauer, A. ve Lemper, B. (2005). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research D: Atmospheres, 110(17), 183–200. doi:10.1029/2004JD005620
Faber, J., Markowska, A., Nelissen, D., Davidson, M., Eyring, V., Cionni, I. Schwarz, W. (2009). Technical support for European action to reducing Greenhouse Gas Emissions from international maritime transport. Accessed from http://ec.europa.eu/clima/policies/transport/shipping/docs/ghg_ships_report_en.pdf.
Freese, N. (2017). International Maritime Shipping CO 2 Emissions CO2 Emissions from International Maritime Shipping-regulations, challenges and possibilities.
García-Olivares, A., Solé, J. and Osychenko, O. (2018). Transportation in a 100% renewable energy system. Energy Conversion and Management, 158(August 2017), 266–285. doi:10.1016/j.enconman.2017.12.053
Haas, J., Nowak, W. ve Palma-Behnke, R. (2019). Multi-objective planning of energy storage technologies for a fully renewable system: Implications for the main stakeholders in Chile. Energy Policy, 126(December 2018), 494–506. doi:10.1016/j.enpol.2018.11.034
Haifeng Wang ve Lutsey, N. (2013). Long-term potential for increased shipping efficiency through the adoption of industry-leading practices, (July), 32.
Hakan Pekşen, N., Pekşen, D. Y. ve Ölçer, A. (2014). Cold Ironing Yöntemi; Marport Limanı Uygulaması Shipping & Port Management 2. Journal of ETA Maritime Science Cold Ironing Yöntemi Journal of ETA Maritime Science, 2(1), 11–30. http://www.journalagent.com/jems/pdfs/JEMS_2_1_11_30.pdf accessed from website.
Hua, J., Cheng, C. W. ve Hwang, D. S. (2019). Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas. Journal of the Air and Waste Management Association, 69(2), 131–144. doi:10.1080/10962247.2018.1505675
Hughes, E. (2016). Recent developments at IMO to address GHG emissions from ships. International Maritime Organization (IMO), (November). http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/UN accessed from website.
IMarEST ve Colfax. (2015a). Making the Green Agenda Pay, 16.
IMarEST ve Colfax. (2015b). Making the Green Agenda Pay, 16. https://www.imarest.org/all-docman-documents/representation/green-agenda/551-making-the-green-agenda-pay/file accessed from website..
IMO. (2009). No Title. Environment, Marine Committee, Protection Of, Reduction Emissions, G H G Ships, From Abatement, Marginal Effectiveness, Cost Submitted, Energy-efficiency Measures Engineering, Marine, 61.
IMO. (2018). Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue, (International Maritime Organisation), 27. Accessed from https://unfccc.int/sites/default/files/resource/250_IMO
IMO, (2015) Control, A., Technologies, A., Reduce, T. O., Carbon, B., Shipping, I. (2015). IMO - Black Carbon. Accessed from www.imo.org.
(IMO, 2019) Air Pollution Prevention Regulations http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-–-Regulation-14.aspx
IPCC. (2006). Volume 2: Energy - Chapter 2: Stationary Combustion, 2006. IPCC Guidelines for National Greenhouse Gas Inventories, 2.1 2.47. doi:10.1016/S0166-526X(06)47021-5
Jain, S. ve Jain, P. K. (2017). The rise of Renewable Energy implementation in South Africa. Energy Procedia, 143, 721–726. doi:10.1016/j.egypro.2017.12.752
Kinto, O. T., De Oliveira Bernal, J. L., Veiga Gimenes, A. L. and Morales Udaeta, M. E. (2017). Sustainable Energy Technologies in the Industry Using Integrated Energy Resources Planning. Energy Procedia, 118, 4–14. doi:10.1016/j.egypro.2017.07.002
Lindstad, H. E. (2014). Hydrogen the Next Maritime Fuel, 12pp. Lindstad, H., Eskeland, G. S., Psaraftis, H., Sandaas, I. ve Strømman, A. H. (2015). Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 110, 94–101. doi:10.1016/j.oceaneng.2015.09.029
Mander, S. (2017). Slow steaming and a new dawn for wind propulsion: A multi-level analysis of two low carbon-shipping transitions. Marine Policy, 75, 210–216. doi:10.1016/j.marpol.2016.03.018Maritime, G. ve Monitor, I. (2018). Global Maritime Issues Monit o r.
Matulić, N., Radica, G., Barbir, F. and Nižetić, S. (2019). Commercial vehicle auxiliary loads powered by PEM fuel cell. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.12.121
Michalski, J., Poltrum, M. ve Bünger, U. (2018). The role of renewable fuel supply in the transport sector in a future decarbonized energy system. International Journal of Hydrogen Energy, 2018, 1–12. doi:10.1016/j.ijhydene.2018.10.110
Mofor, L., Nuttal, P. ve Alison, N. (2015). Renewable energy: Options for scrutiny, (July).
Morsy El-Gohary, M. (2013). Overview of past, present and future marine power plants. Journal of Marine Science and Application, 12(2), 219–227. doi:10.1007/s11804-013-1188-8
Mosácula, C., Chaves-Ávila, J. P. ve Reneses, J. (2019). Reviewing the design of natural gas network charges considering regulatory principles as guiding criteria in the context of the increasing interrelation of energy carriers. Energy Policy, 126(December 2018), 545–557. doi:10.1016/j.enpol.2018.10.069
Pata, U. K. (2018). Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. Journal of Cleaner Production, 187, 770–779. doi:10.1016/j.jclepro.2018.03.236
Pierru, A., Wu, K., Murphy, F., Galkin, P., Feijoo, F., Rioux, B.Malov, A. (2019). The economic impact of price controls on China’s natural gas supply chain. Energy Economics, 80(2019), 394–410. doi:10.1016/j.eneco.2018.12.026
Psaraftis, H. N. (2016). Green Maritime Logistics: The Quest for Win-win Solutions. Transportation Research Procedia, 14, 133–142. doi:10.1016/j.trpro.2016.05.049Rahim, M. M., Islam, M. T. ve Kuruppu, S. (2016). Regulating global shipping corporations’ accountability for reducing greenhouse gas emissions in the seas. Marine Policy, 69, 159–170. doi:10.1016/j.marpol.2016.04.018
Rehmatulla, N., Calleya, J. and Smith, T. (2017). The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, 139 (June 2016), 184–197. doi:10.1016/j.oceaneng.2017.04.029
Rehmatulla, N., Parker, S., Smith, T. and Stulgis, V. (2017). Wind technologies: Opportunities and barriers to a low carbon shipping industry. Marine Policy, 75, 217–226. doi:10.1016/j.marpol.2015.12.021
Rehmatulla, N. and Smith, T. (2015). Barriers to energy efficient and low carbon shipping. Ocean Engineering, 110, 102–112. doi:10.1016/j.oceaneng.2015.09.030
Robles Algarín, C., Llanos, A. P. and Castro, A. O. (2017). An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy |, 7(4), 38–47. Accessed from http:www.econjournals.com.
Tanç, B., Arat, H. T., Baltacıoğlu, E. and Aydın, K. (2018). Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.10.112
Technical, N. (2012). This document is downloaded from DR-NTU Nanyang Technological OPERATOR ’ S PERSPECTIVE IN THE CONTAINER SHIPPING.
Tronstad, T., Åstrand, H. H., Haugom, G. P. and Langfeldt, L. (2017). Study on the use of Fuel Cells in Shipping, 1–108.Wan, Z., el Makhloufi, A., Chen, Y. ve Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine Pollution Bulletin, 126(December), 428–435. doi:10.1016/j.marpolbul.2017.11.064
Wärtsilä. (2009). Boosting energy efficiency, (February), 1–68.
Xu, H., Li, Y. and Huang, H. (2017). Spatial Research on the Effect of Financial Structure on CO2 Emission. Energy Procedia, 118, 179–183. doi:10.1016/j.egypro.2017.07.037
Zhang, Y., Lin, Z. ve Liu, Q. (2014). Marine renewable energy in China: Current status and perspectives. Water Science and Engineering, 7(3), 288–305. doi:10.3882/j.issn.1674-2370.2014.03.005
INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION
Year 2019,
Volume: 1 Issue: 1, 30 - 39, 25.12.2019
One of the most
important actors of maritime transport is cargo ships where cargo is
transported. Nowadays, the expansion of the maritime trade volume with
increasing acceleration, the increase in the size and quantity of ships in the world’s
merchant navy fleet cause transportation costs to decrease per ton while to
bring some negative effects such as air pollution. The major cause of
ship-source air pollution is the conventional fuel used in propulsion systems.
As of 2006, serious steps are being taken in the context of air pollution
prevention measures that have been on the agenda in the sector on a global
scale. In this study, recent academic literature conducted on this subject
reviewed in recent years, renewable energy and other fuel types that can be
used in efficiency equivalent to conventional fuel were evaluated. As a result
of this thematic review, although the ship projects carried out with renewable
energy in the project phase are exciting, the most powerful alternative in the
short term seems liquefied natural gas (LNG) which is not accepted as renewable
but found to be successful in terms of emissions. It can be used in ships with
tonnage nearby coastal voyages, while in the offshore vessels which constitute
the main emission problem; renewable energy is evaluated within the scope of
additional measures that increase efficiency in the short term. In addition, as
a fuel alternative, hydrogen is a candidate for future ship fuel in the medium
and long term.
Adams, S., Klobodu, E. K. M. ve Apio, A. (2018). Renewable and non-renewable energy, regime type and economic growth. Renewable Energy, 125, 755–767. doi:10.1016/j.renene.2018.02.135
Blazquez, J., Fuentes-Bracamontes, R., Bollino, C. A. and Nezamuddin, N. (2018). The renewable energy policy Paradox. Renewable and Sustainable Energy Reviews, 82(October 2017), 1–5. doi:10.1016/j.rser.2017.09.002
Bouman, E. A., Lindstad, E., Rialland, A. I. and Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52, 408–421. doi:10.1016/j.trd.2017.03.022
Breyer, C., Afanasyeva, S., Brakemeier, D., Engelhard, M., Giuliano, S., Puppe, M., Moser, M. (2017). Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings (C. 1850, s. 160001). AIP Publishing LLC. doi:10.1063/1.4984535
Burke, M. J. and Stephens, J. C. (2018). Political power and renewable energy futures: A critical review. Energy Research and Social Science, 35(November 2017), 78–93. doi:10.1016/j.erss.2017.10.018
Cabrera, P., Lund, H. and Carta, J. A. (2018). Smart renewable energy penetration strategies on islands: The case of Gran Canaria. Energy, 162, 421–443. doi:10.1016/j.energy.2018.08.020
Calleya, J. N. (2014). Ship Design Decision Support for a Carbon Dioxide Constrained Future, 125.
Cames, M., Graichen, J., Siemons, A. and Cook, V. (2015). Emission Reduction Targets for International Aviation and Shipping. European Parliament - Policy Department, (1), 1–52. http://www.europarl.europa.eu/RegData/etudes/STUD/2015/569964/IPOL_STU%282015%29569964_EN.pdf accessed from this website.
Chen, Y., Wang, Z. and Zhong, Z. (2019). CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renewable Energy, 131, 208–216. doi:10.1016/j.renene.2018.07.047
Chong, W. W. F. F., Ng, J. H., Rajoo, S. and Chong, C. T. (2018). Sector of Passenger transportation gasoline consumption due to friction in Southeast Asian countries. Energy Conversion and Management, 158 (November 2017), 346–358. doi:10.1016/j.enconman.2017.12.083
Clean North Sea Shipping Project. (2014). Clean North Sea Shipping Final Report: Key Findings and Recommendations, (March), 92. http://cnss.no/wp-content/uploads/2014/03/CNSS_Final_Report_web.pdf accessed from website.
Connolly, D., Mathiesen, B. V. and Ridjan, I. (2014). A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy, 73, 110–125. doi:10.1016/j.energy.2014.05.104
Deniz, C. and Zincir, B. (2016). Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production, 113(X), 438–449. doi:10.1016/j.jclepro.2015.11.089
Ertay, T., Kahraman, C. and Kaya, İ. (2013). Evaluation of Renewable Energy Alternatives Using Macbeth and Fuzzy Ahp Multicriteria Methods: The Case of Turkey. Technological and Economic Development of Economy, 19(1), 38–62. doi:10.3846/20294913.2012.762950
Eyring, V., Köhler, H. W., Lauer, A. ve Lemper, B. (2005). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research D: Atmospheres, 110(17), 183–200. doi:10.1029/2004JD005620
Faber, J., Markowska, A., Nelissen, D., Davidson, M., Eyring, V., Cionni, I. Schwarz, W. (2009). Technical support for European action to reducing Greenhouse Gas Emissions from international maritime transport. Accessed from http://ec.europa.eu/clima/policies/transport/shipping/docs/ghg_ships_report_en.pdf.
Freese, N. (2017). International Maritime Shipping CO 2 Emissions CO2 Emissions from International Maritime Shipping-regulations, challenges and possibilities.
García-Olivares, A., Solé, J. and Osychenko, O. (2018). Transportation in a 100% renewable energy system. Energy Conversion and Management, 158(August 2017), 266–285. doi:10.1016/j.enconman.2017.12.053
Haas, J., Nowak, W. ve Palma-Behnke, R. (2019). Multi-objective planning of energy storage technologies for a fully renewable system: Implications for the main stakeholders in Chile. Energy Policy, 126(December 2018), 494–506. doi:10.1016/j.enpol.2018.11.034
Haifeng Wang ve Lutsey, N. (2013). Long-term potential for increased shipping efficiency through the adoption of industry-leading practices, (July), 32.
Hakan Pekşen, N., Pekşen, D. Y. ve Ölçer, A. (2014). Cold Ironing Yöntemi; Marport Limanı Uygulaması Shipping & Port Management 2. Journal of ETA Maritime Science Cold Ironing Yöntemi Journal of ETA Maritime Science, 2(1), 11–30. http://www.journalagent.com/jems/pdfs/JEMS_2_1_11_30.pdf accessed from website.
Hua, J., Cheng, C. W. ve Hwang, D. S. (2019). Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas. Journal of the Air and Waste Management Association, 69(2), 131–144. doi:10.1080/10962247.2018.1505675
Hughes, E. (2016). Recent developments at IMO to address GHG emissions from ships. International Maritime Organization (IMO), (November). http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/UN accessed from website.
IMarEST ve Colfax. (2015a). Making the Green Agenda Pay, 16.
IMarEST ve Colfax. (2015b). Making the Green Agenda Pay, 16. https://www.imarest.org/all-docman-documents/representation/green-agenda/551-making-the-green-agenda-pay/file accessed from website..
IMO. (2009). No Title. Environment, Marine Committee, Protection Of, Reduction Emissions, G H G Ships, From Abatement, Marginal Effectiveness, Cost Submitted, Energy-efficiency Measures Engineering, Marine, 61.
IMO. (2018). Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue, (International Maritime Organisation), 27. Accessed from https://unfccc.int/sites/default/files/resource/250_IMO
IMO, (2015) Control, A., Technologies, A., Reduce, T. O., Carbon, B., Shipping, I. (2015). IMO - Black Carbon. Accessed from www.imo.org.
(IMO, 2019) Air Pollution Prevention Regulations http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-–-Regulation-14.aspx
IPCC. (2006). Volume 2: Energy - Chapter 2: Stationary Combustion, 2006. IPCC Guidelines for National Greenhouse Gas Inventories, 2.1 2.47. doi:10.1016/S0166-526X(06)47021-5
Jain, S. ve Jain, P. K. (2017). The rise of Renewable Energy implementation in South Africa. Energy Procedia, 143, 721–726. doi:10.1016/j.egypro.2017.12.752
Kinto, O. T., De Oliveira Bernal, J. L., Veiga Gimenes, A. L. and Morales Udaeta, M. E. (2017). Sustainable Energy Technologies in the Industry Using Integrated Energy Resources Planning. Energy Procedia, 118, 4–14. doi:10.1016/j.egypro.2017.07.002
Lindstad, H. E. (2014). Hydrogen the Next Maritime Fuel, 12pp. Lindstad, H., Eskeland, G. S., Psaraftis, H., Sandaas, I. ve Strømman, A. H. (2015). Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 110, 94–101. doi:10.1016/j.oceaneng.2015.09.029
Mander, S. (2017). Slow steaming and a new dawn for wind propulsion: A multi-level analysis of two low carbon-shipping transitions. Marine Policy, 75, 210–216. doi:10.1016/j.marpol.2016.03.018Maritime, G. ve Monitor, I. (2018). Global Maritime Issues Monit o r.
Matulić, N., Radica, G., Barbir, F. and Nižetić, S. (2019). Commercial vehicle auxiliary loads powered by PEM fuel cell. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.12.121
Michalski, J., Poltrum, M. ve Bünger, U. (2018). The role of renewable fuel supply in the transport sector in a future decarbonized energy system. International Journal of Hydrogen Energy, 2018, 1–12. doi:10.1016/j.ijhydene.2018.10.110
Mofor, L., Nuttal, P. ve Alison, N. (2015). Renewable energy: Options for scrutiny, (July).
Morsy El-Gohary, M. (2013). Overview of past, present and future marine power plants. Journal of Marine Science and Application, 12(2), 219–227. doi:10.1007/s11804-013-1188-8
Mosácula, C., Chaves-Ávila, J. P. ve Reneses, J. (2019). Reviewing the design of natural gas network charges considering regulatory principles as guiding criteria in the context of the increasing interrelation of energy carriers. Energy Policy, 126(December 2018), 545–557. doi:10.1016/j.enpol.2018.10.069
Pata, U. K. (2018). Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. Journal of Cleaner Production, 187, 770–779. doi:10.1016/j.jclepro.2018.03.236
Pierru, A., Wu, K., Murphy, F., Galkin, P., Feijoo, F., Rioux, B.Malov, A. (2019). The economic impact of price controls on China’s natural gas supply chain. Energy Economics, 80(2019), 394–410. doi:10.1016/j.eneco.2018.12.026
Psaraftis, H. N. (2016). Green Maritime Logistics: The Quest for Win-win Solutions. Transportation Research Procedia, 14, 133–142. doi:10.1016/j.trpro.2016.05.049Rahim, M. M., Islam, M. T. ve Kuruppu, S. (2016). Regulating global shipping corporations’ accountability for reducing greenhouse gas emissions in the seas. Marine Policy, 69, 159–170. doi:10.1016/j.marpol.2016.04.018
Rehmatulla, N., Calleya, J. and Smith, T. (2017). The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, 139 (June 2016), 184–197. doi:10.1016/j.oceaneng.2017.04.029
Rehmatulla, N., Parker, S., Smith, T. and Stulgis, V. (2017). Wind technologies: Opportunities and barriers to a low carbon shipping industry. Marine Policy, 75, 217–226. doi:10.1016/j.marpol.2015.12.021
Rehmatulla, N. and Smith, T. (2015). Barriers to energy efficient and low carbon shipping. Ocean Engineering, 110, 102–112. doi:10.1016/j.oceaneng.2015.09.030
Robles Algarín, C., Llanos, A. P. and Castro, A. O. (2017). An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy |, 7(4), 38–47. Accessed from http:www.econjournals.com.
Tanç, B., Arat, H. T., Baltacıoğlu, E. and Aydın, K. (2018). Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.10.112
Technical, N. (2012). This document is downloaded from DR-NTU Nanyang Technological OPERATOR ’ S PERSPECTIVE IN THE CONTAINER SHIPPING.
Tronstad, T., Åstrand, H. H., Haugom, G. P. and Langfeldt, L. (2017). Study on the use of Fuel Cells in Shipping, 1–108.Wan, Z., el Makhloufi, A., Chen, Y. ve Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine Pollution Bulletin, 126(December), 428–435. doi:10.1016/j.marpolbul.2017.11.064
Wärtsilä. (2009). Boosting energy efficiency, (February), 1–68.
Xu, H., Li, Y. and Huang, H. (2017). Spatial Research on the Effect of Financial Structure on CO2 Emission. Energy Procedia, 118, 179–183. doi:10.1016/j.egypro.2017.07.037
Zhang, Y., Lin, Z. ve Liu, Q. (2014). Marine renewable energy in China: Current status and perspectives. Water Science and Engineering, 7(3), 288–305. doi:10.3882/j.issn.1674-2370.2014.03.005
There are 54 citations in total.
Details
Primary Language
English
Subjects
Maritime Engineering (Other), Business Administration
Efecan, V., & Gürgen, E. (2019). INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. Mersin University Journal of Maritime Faculty, 1(1), 30-39.
AMA
Efecan V, Gürgen E. INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. MEUJMAF. December 2019;1(1):30-39.
Chicago
Efecan, Volkan, and Ender Gürgen. “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty 1, no. 1 (December 2019): 30-39.
EndNote
Efecan V, Gürgen E (December 1, 2019) INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. Mersin University Journal of Maritime Faculty 1 1 30–39.
IEEE
V. Efecan and E. Gürgen, “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”, MEUJMAF, vol. 1, no. 1, pp. 30–39, 2019.
ISNAD
Efecan, Volkan - Gürgen, Ender. “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty 1/1 (December 2019), 30-39.
JAMA
Efecan V, Gürgen E. INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. MEUJMAF. 2019;1:30–39.
MLA
Efecan, Volkan and Ender Gürgen. “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty, vol. 1, no. 1, 2019, pp. 30-39.
Vancouver
Efecan V, Gürgen E. INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. MEUJMAF. 2019;1(1):30-9.