BibTex RIS Kaynak Göster

Ultraviyole Işık ve Çevresel Stres Şartlarında Meyve ve Sebzelerde Antosiyaninlerin Oluşumu ve Değişimi

Yıl 2017, Cilt: 2 - Özel Sayı (Sempozyum), 0 - 0, 04.10.2017

Öz

Antosiyaninler, flavonoidler içerisinde yer alan suda çözünür pigmentler olup, pH’ya bağlı olarak değişik renkler oluşturmaktadır. Antosiyaninler bitkiler aleminde epidermal ve mezofil hücrelerinin vakuollerinde bulunmakta, değişik stres şartlarına karşı bitkinin savunma mekanizmasının oluşturduğu ikincil metabolitler olarak da bilinmektedir. Antosiyaninler, özellikle tozlayıcı böceklerin dikkatinin çekilmesinin yanı sıra; ultraviyole radyasyon, otoburlar, kuraklık ve soğuk gibi çevresel streslere karşı savunma amaçlı olarak da bitkide biriktirilmektedir. Antosiyaninler yaygın olarak meyve, çiçek, sebze ve diğer bitki doku ve organlarında bulunmakta, çoğunlukla meyve ve çiçeklerde biriktirilmekle birlikte, aynı zamanda yaprak, gövde ve depo organlarında da bulunmaktadır. Antosiyaninler, böğürtlen, kırmızı ve siyah ahududu, maviyemiş, yaban mersini, kiraz, Frenk üzümü, kan portakalı, mürver, üzüm gibi meyveler ile kırmızı soğan, turp, kırmızı lahana, rezene, kırmızı marul, patlıcan, kırmızı kabuklu patates ve mor tatlı patates gibi sebzelerin kırmızı, mavi ve mor renklerini oluşturmaktadır. Bitkilerde bulunan antosiyanin miktarı; bitki genleri ışık, sıcaklık ve tarımsal faktörler tarafından etkilendiği için, farklı bitkiler ve hatta aynı bitkinin çeşitleri arasında dikkate değer oranda farklıdır. Bu çalışmada bitkilerdeki antosiyanin oluşumu ve biriktirilmesi üzerine ultraviyole radyasyon ve çevresel faktörlerinin etkisi incelenmiştir. 

Anahtar Kelimeler: Flavonoid, antosiyanin, meyve, sebze, stres. 

Kaynakça

  • Kaynaklar
  • Arakawa O, 1993. Effect of ultraviolet light on anthocyanin synthesis in light-colored sweet cherry, cv. Sato Nishiki. J. Jpn. So.,Hortic.Sci., 62:543-546.
  • Arakawa O, Hori Y, Ogata R, 1985. Relative effectiveness and interaction of ultravolet-B red and blue light in anthocyanin synthesis of apple fruit., Physiol. Plant, 64:323-327.
  • Bahler BD, Steffen KI, Orzolek MD, 1991. Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. HortScience, 26:736.
  • Bogs J, Jaffe FW, Taos AM, Walker AR, Robinson SP, 2007. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol., 143: 1347-1361.
  • Chalker-Scott L, 1999. Environmental significance of anthocyanins in plant stres responses. Photochem Photobiol, 70:1-9.
  • Chan LK, Koay SS, Boey PL, Bhat, A, 2010. Effects of abiotic stres on biomass and 43:127-135.
  • Christie PJ, Alfenito MR, Walbot V, 1994. Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedling. Planta, 194: 541-549.
  • Clifford MN, 2000. Anthocyanins-nature, occurence and dietary burden. J.Sci.Food Agric., 80:1063-1072.
  • Daneshmand F, Arvin MJ, Kalantari KM, 2010. Physiological responses to NaCl stres in three wild species of potato in vitro. Acta Physiol. Plant., 32: 91-101.
  • Dixon RA, Paiva N, 1995. Stressed induced phenyl propanoid metabolism. Plant Cell, 7:1085-1097.
  • Eder A, 2000. Pigments in food analysis by HPLC. (Nollet M.L.L. eds.), Marcel Dekker, New York, pp:845-880.
  • Falcon-Ferreyra ML, Rius SP, Casati P, 2012. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 3:222.
  • Frohnmeyer H, Staiger D, 2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol, 133: 1420-1428.
  • Griffith M, Yoish MWF, 2004. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 9:399-405.
  • Guo J, Wang M, 2010. Ultraviolet A specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.), Plant Growth Regul, 62:1-8.
  • Hagemeyer J, 1999. Ecophysiology of plant growth under heavy metal stress. In: Prasad MNV, Hagemeyer, J., Eds. Heavy metal stres in plants, Berlin: Springer, 222.
  • Hagen SF, Borge GIA, Bengston GB, Bilger W, Berge A, Haffner K, 2007. Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): effect of postharvest UV-B irradiation. Postharvest Biol. Tec., 45:1-10.
  • Hawrylak B, Matraszek R, Szymanska M, 2007. Response of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. Veg. Crop Res. Bull.67:63.
  • He J, Guisti M, 2010. Anthocyanins: Natural Colorants with Health Promoting Properties. Annu. Rev. Food Sci. Technol., 1:163-187.
  • Heijde M, Ulm R, 2012. UV-B photoreceptor-mediated signaling in nplants. Trends Plant Sci. 17:230-237.
  • Horbowicz M, Kosson R, Grzesiuk A, Debski H, 2008. Anthocyanins of fruits and vegetables-their occurence, analysis and role in human nutrition. Vegetable Crops Research Bulletin, 68:5-22.
  • Koes R, Verweij W, Quattrocchio F, 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci., 10: 236-242.
  • Krupa Z, Baranowska M, Orzol D, 1996. Can anthocyanins be considered as heavy metal stres indicator in higher plants? Acta Physiol. Plant, 18:147-151.
  • Larson RA, 1988. The antioxidants of higher plants. Phytochemistry, 27:969-978.
  • Mahajan S, Tuteja N, 2005. Cold, salinity and drought stresses: An Overview. Arch Biohem Biophys, 444:139-158.
  • Marschner H, 1995. Mineral nutrition of higher plants, Academic Press, London, 889.
  • Martens S, Preuss A, Matern U, 2010. Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arapidopsis thaliana L., Phytochemistry, 71: 1040-1049.
  • Martinez-Lüscher J, Torres N, Hilbert G, Richard T, Sanchez-Diaz M, Delrot S, 2014. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry, 102: 106-114.
  • Narayan MS, Thimmaraju R, Bhagyalakshmi N, 2005. Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem, 40:351-358.
  • Parida AK, Das AB, 2005. Salt tolerance and salinity effects on plants: a review. Acotoxicol Environ. Saf., 60:324-349.
  • Qian M, Zhang D, Yue X, Wang S, Li X, Teng Y, 2013. Analysis of different pigmentation patterns in Mantianhong (Pyrus pyrifolia Nakai) and Cascade (Pyrus communis L) under bagging treatment and postharvest UV-B/visible irradiation conditions. Sci. Hortic. 151: 75-82.
  • Raghvendra M, Sharma V, Shakya A, Hedaytullah MD, Arya GS, Mishra A, Gupta AD, Pachpute AP, Patel D, 2011. Chemical and potential aspects of anthocyanins- A water soluble vacuolar flavonoid pigments: A review. Int. J. Pharm. Sciences Review and Research., 6(1):28-33.
  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3MYB transcription factors. BMC Plant Bio. 13:68.
  • Seigler DS, 1998. Plant Secondary Metabolism. Boston MA: Chapman and Hall (Kluwer Academic Publishers), 711.
  • Sun Y, Qian M, Wu R, Niu Q, Teng Y, Zhang D, 2014. Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biol. Tec. 91:64-71.
  • Timberlake CF, Henry, B.S., 1988. Anthocyanins as natural food colorants. Prog. Clin. Biol. Res., 280:107-121.
  • Winkel-Shirley B, 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol, 26:485-493.
  • Xu Z, Zhou G, Shimizu H, 2010. Plant responses to drought and rewatering. Plant Signal Behav. 5:649-654.
  • Zhang W, Seki M, Furusaki S, 1997. Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Sci. 127: 207-214.
  • Zhong JJ, Yoshida T, 1993. Effects of temperature on cell growth and anthocyanin production in suspension cultures of Perilla frustescens. J. Ferment Bioeng., 76:530-531.
  • Zoratti L, Karppinen K, Escobar AL, Haggman H, Jaakola L, 2014. Light-controlled flavonoid biosythesis in fruits. Frontiers in Plant Science. 5:1-15.
Yıl 2017, Cilt: 2 - Özel Sayı (Sempozyum), 0 - 0, 04.10.2017

Öz

Kaynakça

  • Kaynaklar
  • Arakawa O, 1993. Effect of ultraviolet light on anthocyanin synthesis in light-colored sweet cherry, cv. Sato Nishiki. J. Jpn. So.,Hortic.Sci., 62:543-546.
  • Arakawa O, Hori Y, Ogata R, 1985. Relative effectiveness and interaction of ultravolet-B red and blue light in anthocyanin synthesis of apple fruit., Physiol. Plant, 64:323-327.
  • Bahler BD, Steffen KI, Orzolek MD, 1991. Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. HortScience, 26:736.
  • Bogs J, Jaffe FW, Taos AM, Walker AR, Robinson SP, 2007. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol., 143: 1347-1361.
  • Chalker-Scott L, 1999. Environmental significance of anthocyanins in plant stres responses. Photochem Photobiol, 70:1-9.
  • Chan LK, Koay SS, Boey PL, Bhat, A, 2010. Effects of abiotic stres on biomass and 43:127-135.
  • Christie PJ, Alfenito MR, Walbot V, 1994. Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedling. Planta, 194: 541-549.
  • Clifford MN, 2000. Anthocyanins-nature, occurence and dietary burden. J.Sci.Food Agric., 80:1063-1072.
  • Daneshmand F, Arvin MJ, Kalantari KM, 2010. Physiological responses to NaCl stres in three wild species of potato in vitro. Acta Physiol. Plant., 32: 91-101.
  • Dixon RA, Paiva N, 1995. Stressed induced phenyl propanoid metabolism. Plant Cell, 7:1085-1097.
  • Eder A, 2000. Pigments in food analysis by HPLC. (Nollet M.L.L. eds.), Marcel Dekker, New York, pp:845-880.
  • Falcon-Ferreyra ML, Rius SP, Casati P, 2012. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 3:222.
  • Frohnmeyer H, Staiger D, 2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol, 133: 1420-1428.
  • Griffith M, Yoish MWF, 2004. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 9:399-405.
  • Guo J, Wang M, 2010. Ultraviolet A specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.), Plant Growth Regul, 62:1-8.
  • Hagemeyer J, 1999. Ecophysiology of plant growth under heavy metal stress. In: Prasad MNV, Hagemeyer, J., Eds. Heavy metal stres in plants, Berlin: Springer, 222.
  • Hagen SF, Borge GIA, Bengston GB, Bilger W, Berge A, Haffner K, 2007. Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): effect of postharvest UV-B irradiation. Postharvest Biol. Tec., 45:1-10.
  • Hawrylak B, Matraszek R, Szymanska M, 2007. Response of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. Veg. Crop Res. Bull.67:63.
  • He J, Guisti M, 2010. Anthocyanins: Natural Colorants with Health Promoting Properties. Annu. Rev. Food Sci. Technol., 1:163-187.
  • Heijde M, Ulm R, 2012. UV-B photoreceptor-mediated signaling in nplants. Trends Plant Sci. 17:230-237.
  • Horbowicz M, Kosson R, Grzesiuk A, Debski H, 2008. Anthocyanins of fruits and vegetables-their occurence, analysis and role in human nutrition. Vegetable Crops Research Bulletin, 68:5-22.
  • Koes R, Verweij W, Quattrocchio F, 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci., 10: 236-242.
  • Krupa Z, Baranowska M, Orzol D, 1996. Can anthocyanins be considered as heavy metal stres indicator in higher plants? Acta Physiol. Plant, 18:147-151.
  • Larson RA, 1988. The antioxidants of higher plants. Phytochemistry, 27:969-978.
  • Mahajan S, Tuteja N, 2005. Cold, salinity and drought stresses: An Overview. Arch Biohem Biophys, 444:139-158.
  • Marschner H, 1995. Mineral nutrition of higher plants, Academic Press, London, 889.
  • Martens S, Preuss A, Matern U, 2010. Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arapidopsis thaliana L., Phytochemistry, 71: 1040-1049.
  • Martinez-Lüscher J, Torres N, Hilbert G, Richard T, Sanchez-Diaz M, Delrot S, 2014. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry, 102: 106-114.
  • Narayan MS, Thimmaraju R, Bhagyalakshmi N, 2005. Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem, 40:351-358.
  • Parida AK, Das AB, 2005. Salt tolerance and salinity effects on plants: a review. Acotoxicol Environ. Saf., 60:324-349.
  • Qian M, Zhang D, Yue X, Wang S, Li X, Teng Y, 2013. Analysis of different pigmentation patterns in Mantianhong (Pyrus pyrifolia Nakai) and Cascade (Pyrus communis L) under bagging treatment and postharvest UV-B/visible irradiation conditions. Sci. Hortic. 151: 75-82.
  • Raghvendra M, Sharma V, Shakya A, Hedaytullah MD, Arya GS, Mishra A, Gupta AD, Pachpute AP, Patel D, 2011. Chemical and potential aspects of anthocyanins- A water soluble vacuolar flavonoid pigments: A review. Int. J. Pharm. Sciences Review and Research., 6(1):28-33.
  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3MYB transcription factors. BMC Plant Bio. 13:68.
  • Seigler DS, 1998. Plant Secondary Metabolism. Boston MA: Chapman and Hall (Kluwer Academic Publishers), 711.
  • Sun Y, Qian M, Wu R, Niu Q, Teng Y, Zhang D, 2014. Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biol. Tec. 91:64-71.
  • Timberlake CF, Henry, B.S., 1988. Anthocyanins as natural food colorants. Prog. Clin. Biol. Res., 280:107-121.
  • Winkel-Shirley B, 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol, 26:485-493.
  • Xu Z, Zhou G, Shimizu H, 2010. Plant responses to drought and rewatering. Plant Signal Behav. 5:649-654.
  • Zhang W, Seki M, Furusaki S, 1997. Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Sci. 127: 207-214.
  • Zhong JJ, Yoshida T, 1993. Effects of temperature on cell growth and anthocyanin production in suspension cultures of Perilla frustescens. J. Ferment Bioeng., 76:530-531.
  • Zoratti L, Karppinen K, Escobar AL, Haggman H, Jaakola L, 2014. Light-controlled flavonoid biosythesis in fruits. Frontiers in Plant Science. 5:1-15.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Rezzan Kasım

Yayımlanma Tarihi 4 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 2 - Özel Sayı (Sempozyum)

Kaynak Göster