Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Hypothesizing and Experimenting Skills with Open Ended Item Samples

Yıl 2022, Cilt: 51 Sayı: 236, 3359 - 3392, 11.11.2022
https://doi.org/10.37669/milliegitim.990089

Öz

This research aimed to evaluate the hypothesizing and experimenting skills of undergraduate students in the first year of the sociology department and the third year of the child development department at a state university, using open-ended items. Additionally, the purpose of this study is understand the nature of evaluated skills based on student responses. 178 students participated in the study. Five open-ended items were given to the students for four weeks and their answers were evaluated using a rubric. Student responses were collected through this interface by opening an assignment page in a class created on Google Classroom, and student responses were evaluated in the relevant week. The answers given by the students were classified as the most correct answer, partially correct answers, incorrect answers, irrelevant and empty answers in the rubric, and the development of the students in skills was monitored with the number and percentage values. In the study, less than half of the students were able to reach the most correct answer in all questions except one. The third-year students of the child development department achieved higher success than the first-year students of the sociology department. It was thought that the class level together with the subject context played an important role in measuring the skill.

Kaynakça

  • Akdeniz, A. R. (2008). Problem çözme, bilimsel süreç ve proje yönteminin fen eğitiminde kullanımı. Çepni, S. (Editör). Fen ve Teknoloji Öğretimi. (7. Baskı), s.128-153’teki bölüm. Ankara: PegemA Yayıncılık.
  • Aktamış, H., ve Ergin, Ö. (2007). Bilimsel süreç becerileriyle bilimsel yaratıcılık arasındaki ilişkinin belirlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33, 11-23.
  • Aslan, S., Ertaş Kılıç, H., ve Kılıç, D. (2016). Bilimsel süreç becerileri. Ankara: Pegem Akademik Yayıncılık. Bruner, J. S., GOODNOW, J. J., ve AUSTIN, G. A. (1956). A study of thinking. New York: John Wiley & Sons.
  • Cansız, M. (2018). Bilimsel süreç becerileri ve bu becerilerin erken çocuklukta gelişimi. P. R. Asiye içinde, Erken Çocuklukta Fen Eğitimi (s. 275-312). Ankara: Eğiten Kitap Yayıncılık.
  • Celep, A., & Bacanak, A. (2013). Yüksek lisans yapan öğretmenlerin bilimsel süreç becerileri ve kazanılması hakkındaki görüşleri. Türk Fen Eğitimi Dergisi, 10(1), 56-78.
  • Corcoran, P. B., ve Wals, A. E. (2004). The problematics of sustainability in higher education: An introduction. In P. B.
  • Corcoran, & A. E. Wals (Eds.), Higher Education and the Challenge of Sustainability Problematics, Promise, and Practice (s. 3-6). Netherlands: Kluwer Academic Publishers.
  • Croker, S., ve Buchanan, H. (2011). Scientific reasoning in a real‐world context: The effect of prior belief and outcome on children's hypothesis‐testing strategies. British Journal of Developmental Psychology, 29(3), 409-424.
  • Department of Education and Science (1991). Science in the National Curriculum, London: HMSO.
  • Dökme, İ. (2019). Bilimsel muhakeme becerilerine genel bir bakış. İ. Dökme içinde, Bilimsel Muhakeme Becerileri ile Düşünme Sanatı (s. 1-6). Ankara: Anı Yayıncılık.
  • Dori, Y., Zohar, A., Fischer-Shachor, D., Kohan-Mass, J., ve Carmi, M. (2018). Gender-fair assessment of young gifted students’ scientific thinking skills. International Journal of Science Education, 40(6), 595-620. https://doi.org/10.1080/09500693.2018.1431419
  • Eckel, J., Zavaritskaya, O., Schüttpelz-Brauns, K., ve Schubert, R. (2019). An explorative vs. traditional practical course: how to inspire scientific thinking in medical students. Advances in Physiology Education, 43(3), 350-354. https://doi.org/10.1152/advan.00120.2018
  • Elfeky, A. I. M., Masadeh, T. S. Y., ve Elbyaly, M. Y. H. (2020). Advance organizers in flipped classroom via e-learning management system and the promotion of integrated science process skills. Thinking Skills and Creativity, 35(100622). https://doi.org/10.1016/j.tsc.2019.100622
  • Ennis, R.H. (2015) Critical thinking: A streamlined conception. In: Davies M., Barnett R. (Eds) The Palgrave Handbook of Critical Thinking in Higher Education. Palgrave Macmillan, New York. https://doi.org/10.1057/9781137378057_2
  • Gabel, D. L. (1993). Handbook of research on science teaching and learning project. Macmillan Publishing Company, Division of Macmillan, Inc.
  • Gagné, R. M. (1985). The conditions of learning and theory of instruction. New York: Holt, Rinehart and Winston.
  • Graaf, J. v., Sande, E. V., Gijsel, M., ve Segers, E. (2019). A combined approach to strengthen children’s scientific thinking: direct instruction on scientific reasoning and training of teacher’s verbal support. International Journal of Science Education, 41(9), 1119-1138. https://doi.org/10.1080/09500693.2019.1594442
  • Harlen, W. (2006). Workshop II: Assessing process skill. San Francisco: Exploratorium.
  • Haverlikova, V. (2017). Development of hypothesisıng skills in biophysical context among medical students. 11th International Technology, Education and Development Conference (s. 6242-6245). Valencia: INTED2017 Proceedings.
  • Hodosyova, M., Utla, J., Vanyova, M., Vnukova, P., ve Lapitkova, V. (2015). The development of science process skills in physics education. Procedia - Social and Behavioral Sciences, 186, 982-989. https://doi.org/10.1016/j.sbspro.2015.04.184.
  • Klahr, D., Fay, A., ve Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25(1), 111-146. https://doi.org/10.1006/cogp.1993.1003
  • Klahr, D. ve Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15, 661-667. https://doi.org/10.1111/j.0956-7976.2004.00737.x
  • Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674– 689. doi:10.1037/0033-295X.96.4.674
  • Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.
  • Kuhn, D. (2011). What is scientific thinking and how does it develop? In U. Goswami (Eds.), The Wiley-Blackwell Handbook of Childhood Cognitive Development (s. 498-523). A John Wiley & Sons, Ltd., Publication.
  • Kuhn, D., Amsel, E., ve O'Loughlin, M. (1988). The development of scientific thinking. San Diego , CA : Academic Press.
  • Kuhn, D., García-mila, M., Zohar, A., ve Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60(4), Serial No: 245. https://doi.org/10.2307/1166059
  • Kuhn, D., ve Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113-129. https://doi.org/10.1207/S15327647JCD0101N_11
  • Kurnaz, F. B., ve Kutlu, Ö. (2016). İlkokul 4. sınıf için hazırlanan bilimsel süreç becerileri programının etkililiğinin belirlenmesi. İlköğretim Online, 15(2), 529-547.
  • Kurnaz Adıbatmaz, F. B., ve Kutlu, Ö. (2020). Bilimsel düşünme becerilerinin ölçülmesi. Ankara: Pegem Akademik Yayıncılık.
  • Landis, J. R. & KOCH, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  • Lawson, A. E. (1993). Deductive reasoning, brain maturation, and science concept acquisition: Are they linked? Journal of College Science Teaching, 28, 401–411. https://doi.org/10.1002/tea.3660300904
  • Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of Research in Science Teaching , 42(6), 716– 740. https://doi.org/10.1002/tea.20067
  • Mechling, K. R., ve Oliver, D. L. (1983). Science teaches basic skills. Handbook I. Project for Promoting Science among Elementary School Principals. Washington: National Science Foundation.
  • Millî Eğitim Bakanlığı. Millî Eğitim Bakanlığı 2023 Eğitim Vizyonu. http://2023vizyonu.meb.gov.tr/ adresinden 01.09.2021 tarihinde alınmıştır.
  • Morris, B. J., Croker, S., Zimmerman, C., Grill, D., ve Roming, C. (2013). Gaming science: the “Gamification” of scientific thinking. Frontiers in Psychology, 4(607), 1-16. https://doi.org/10.3389/fpsyg.2013.00607
  • Orion, N., ve Kali, Y. (2005). The effect of an earth-science learning program on students' scientific thinking skills. Journal of Geoscience Education, 53(4), 387-393. https://doi.org/10.5408/1089-9995-53.4.387
  • Özdemir, S. M. (2005). Üniversite öğrencilerinin eleştirel düşünme becerilerinin çeşitli değişkenler açısından değerlendirilmesi. Türk Eğitim Bilimleri Dergisi, 3(3), 297-316.
  • Piaget, J. (1985). The Equilibration of cognitive structures. Chicago: University of Chicago Press.
  • Piekny, J., ve Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain‐general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31(2), 153-179. https://doi.org/10.1111/j.2044-835X.2012.02082.x
  • Ramig, J. E, Bailer, J., ve Ramsey, J. M. (1995). Teaching science process skills. Morriston, NJ: Good Apple Inc.
  • Resmî Gazete. (1981, 11 4). 2547 Sayılı Yükseköğretim Kanunu. Resmî Gazete Sayısı: 17506: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=2547&MevzuatTur=1&MevzuatTertip=5 adresinden alındı
  • Ruffman, T., Perner, J., Olson, D. R., ve Doherty, M. (1993). Reflecting on scientific thinking: children's understanding of the hypothesis-evidence relation. Child Development, 64(6), 1617-1636. https://doi.org/10.1111/j.1467-8624.1993.tb04203.x
  • Sodian, B., Zaitchik, D., ve Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence. Child Development, 62(4), 753– 766. https://doi.org/10.2307/1131175
  • Stevens, C., ve Witkow, M. R. (2014). Training scientific thinking skills: Evidence from an mcat 2015-aligned classroom module. Teaching of Psychology, 41(2), 115-121. https://doi.org/10.1177/0098628314530341
  • Tay, B. (2005). Process skills in science. Malaysia: Pearson Longman.
  • Temiz, B. K. (2020). Assessing skills of identifying variables and formulating hypotheses using scenario-based multiple-choice questions. ınternational Journal of Assessment Tools in Education, (7)1, 1–17. https://dx.doi.org/10.21449/ijate.561895
  • Temiz, B. K., & Tan, M. (2009). Lise 1. sınıf öğrencilerinin değişkenleri belirleme ve hipotez kurma becerileri. Kastamonu Eğitim Dergisi, 17(1), 195-202.
  • Widia, Sartina, F., Irawan, A., Syafrudin, Armansyah, Nurdiana, Hunaepi, Sapnowandi, Prayogi, S., ve Asy’ari, M. (2021). The effectiveness of guided inquiry learning tools in increasing students’ activities and creative thinking skills. The 10th International Conference on Theoretical and Applied Physics (ICTAP2020) (s. 1-6). West Nusa Tenggara: Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1816/1/012102
  • Wu, Y. T., ve Tsai, C. C. (2007). High school students’ informal reasoning on a socio‐scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(9), 1163-1187. https://doi.org/10.1080/09500690601083375.
  • Yang, F. Y. (2004). Exploring high school students' use of theory and evidence in an everyday context: the role of scientific thinking in environmental science decision‐making. International Journal of Science Education, 26(11), 1345-1364. https://doi.org/10.1080/0950069042000205404.
  • Yıldırım, C. (2020). Bilim felsefesi (Cilt 22. Basım). İstanbul: Remzi Kitabevi.
  • Zimbardi, K., Bugarcic, A., Colthorpe, K., Good, J. P., ve Lluka, L. (2013). A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students. Advances in Physiology Education, 303-315. https://doi.org/10.1152/advan.00082.2012
  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172-223. https://doi.org/10.1016/j.dr.2006.12.001
  • Zimmerman, C., & Klahr, D. (2018). Development of scientific thinking. In J. T. Wixted (Eds.), Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Fourth Edition (s. 1-25). John Wiley & Sons.

Açık Uçlu Madde Örnekleriyle Hipotez Kurma ve Deney Planlama Becerilerinin Değerlendirilmesi

Yıl 2022, Cilt: 51 Sayı: 236, 3359 - 3392, 11.11.2022
https://doi.org/10.37669/milliegitim.990089

Öz

Bu araştırma bir devlet üniversitesinde sosyoloji bölümü birinci ve çocuk gelişimi bölümü üçüncü sınıfta öğrenimine devam eden lisans öğrencilerinin hipotez kurma ve deney planlama becerilerinin açık uçlu maddeler kullanılarak değerlendirilmesini ve öğrenci yanıtlarından yola çıkılarak hipotez kurma ve deney planlama becerilerinin doğasını anlamayı amaçlamıştır. Araştırmaya 178 öğrenci katılım göstermiştir. Öğrencilere dört hafta boyunca beş açık uçlu madde verilmiş ve öğrencilerin yanıtları dereceli puanlama anahtarı kullanılarak değerlendirilmiştir. Öğrenci yanıtları Google Classroom üzerinde oluşturulan bir sınıfta, ödev sayfası açılarak bu ara yüz üzerinden toplanmış ve öğrenci yanıtları, ilgili haftada değerlendirilerek her öğrenci için yansıtıcı geri bildirim verilmiştir. Öğrencilerin verdikleri yanıtlar dereceli puanlama anahtarında en doğru yanıt, kısmi doğru yanıtlar, yanlış yanıtlar, ilgisiz ve boş yanıtlar olmak üzere sınıflandırılmış, sayı ve yüzde değerleri ile öğrencilerin becerideki gelişimi izlenmiştir. Sonuç olarak bir soru dışında tüm sorularda öğrencilerin yarısından azı en doğru yanıta ulaşabilmiştir. Öğrenci yanıtları genellikle kısmi doğru yanıtlarda toplanmıştır. Çocuk gelişimi bölümü üçüncü sınıf öğrencileri, sosyoloji bölümü birinci sınıf öğrencilerinden daha yüksek bir başarı elde etmişlerdir. Becerinin ölçülmesinde konu bağlamıyla birlikte sınıf düzeyinin, önemli bir rol oynadığı düşünülmüştür.

Kaynakça

  • Akdeniz, A. R. (2008). Problem çözme, bilimsel süreç ve proje yönteminin fen eğitiminde kullanımı. Çepni, S. (Editör). Fen ve Teknoloji Öğretimi. (7. Baskı), s.128-153’teki bölüm. Ankara: PegemA Yayıncılık.
  • Aktamış, H., ve Ergin, Ö. (2007). Bilimsel süreç becerileriyle bilimsel yaratıcılık arasındaki ilişkinin belirlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33, 11-23.
  • Aslan, S., Ertaş Kılıç, H., ve Kılıç, D. (2016). Bilimsel süreç becerileri. Ankara: Pegem Akademik Yayıncılık. Bruner, J. S., GOODNOW, J. J., ve AUSTIN, G. A. (1956). A study of thinking. New York: John Wiley & Sons.
  • Cansız, M. (2018). Bilimsel süreç becerileri ve bu becerilerin erken çocuklukta gelişimi. P. R. Asiye içinde, Erken Çocuklukta Fen Eğitimi (s. 275-312). Ankara: Eğiten Kitap Yayıncılık.
  • Celep, A., & Bacanak, A. (2013). Yüksek lisans yapan öğretmenlerin bilimsel süreç becerileri ve kazanılması hakkındaki görüşleri. Türk Fen Eğitimi Dergisi, 10(1), 56-78.
  • Corcoran, P. B., ve Wals, A. E. (2004). The problematics of sustainability in higher education: An introduction. In P. B.
  • Corcoran, & A. E. Wals (Eds.), Higher Education and the Challenge of Sustainability Problematics, Promise, and Practice (s. 3-6). Netherlands: Kluwer Academic Publishers.
  • Croker, S., ve Buchanan, H. (2011). Scientific reasoning in a real‐world context: The effect of prior belief and outcome on children's hypothesis‐testing strategies. British Journal of Developmental Psychology, 29(3), 409-424.
  • Department of Education and Science (1991). Science in the National Curriculum, London: HMSO.
  • Dökme, İ. (2019). Bilimsel muhakeme becerilerine genel bir bakış. İ. Dökme içinde, Bilimsel Muhakeme Becerileri ile Düşünme Sanatı (s. 1-6). Ankara: Anı Yayıncılık.
  • Dori, Y., Zohar, A., Fischer-Shachor, D., Kohan-Mass, J., ve Carmi, M. (2018). Gender-fair assessment of young gifted students’ scientific thinking skills. International Journal of Science Education, 40(6), 595-620. https://doi.org/10.1080/09500693.2018.1431419
  • Eckel, J., Zavaritskaya, O., Schüttpelz-Brauns, K., ve Schubert, R. (2019). An explorative vs. traditional practical course: how to inspire scientific thinking in medical students. Advances in Physiology Education, 43(3), 350-354. https://doi.org/10.1152/advan.00120.2018
  • Elfeky, A. I. M., Masadeh, T. S. Y., ve Elbyaly, M. Y. H. (2020). Advance organizers in flipped classroom via e-learning management system and the promotion of integrated science process skills. Thinking Skills and Creativity, 35(100622). https://doi.org/10.1016/j.tsc.2019.100622
  • Ennis, R.H. (2015) Critical thinking: A streamlined conception. In: Davies M., Barnett R. (Eds) The Palgrave Handbook of Critical Thinking in Higher Education. Palgrave Macmillan, New York. https://doi.org/10.1057/9781137378057_2
  • Gabel, D. L. (1993). Handbook of research on science teaching and learning project. Macmillan Publishing Company, Division of Macmillan, Inc.
  • Gagné, R. M. (1985). The conditions of learning and theory of instruction. New York: Holt, Rinehart and Winston.
  • Graaf, J. v., Sande, E. V., Gijsel, M., ve Segers, E. (2019). A combined approach to strengthen children’s scientific thinking: direct instruction on scientific reasoning and training of teacher’s verbal support. International Journal of Science Education, 41(9), 1119-1138. https://doi.org/10.1080/09500693.2019.1594442
  • Harlen, W. (2006). Workshop II: Assessing process skill. San Francisco: Exploratorium.
  • Haverlikova, V. (2017). Development of hypothesisıng skills in biophysical context among medical students. 11th International Technology, Education and Development Conference (s. 6242-6245). Valencia: INTED2017 Proceedings.
  • Hodosyova, M., Utla, J., Vanyova, M., Vnukova, P., ve Lapitkova, V. (2015). The development of science process skills in physics education. Procedia - Social and Behavioral Sciences, 186, 982-989. https://doi.org/10.1016/j.sbspro.2015.04.184.
  • Klahr, D., Fay, A., ve Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25(1), 111-146. https://doi.org/10.1006/cogp.1993.1003
  • Klahr, D. ve Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15, 661-667. https://doi.org/10.1111/j.0956-7976.2004.00737.x
  • Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674– 689. doi:10.1037/0033-295X.96.4.674
  • Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.
  • Kuhn, D. (2011). What is scientific thinking and how does it develop? In U. Goswami (Eds.), The Wiley-Blackwell Handbook of Childhood Cognitive Development (s. 498-523). A John Wiley & Sons, Ltd., Publication.
  • Kuhn, D., Amsel, E., ve O'Loughlin, M. (1988). The development of scientific thinking. San Diego , CA : Academic Press.
  • Kuhn, D., García-mila, M., Zohar, A., ve Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60(4), Serial No: 245. https://doi.org/10.2307/1166059
  • Kuhn, D., ve Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113-129. https://doi.org/10.1207/S15327647JCD0101N_11
  • Kurnaz, F. B., ve Kutlu, Ö. (2016). İlkokul 4. sınıf için hazırlanan bilimsel süreç becerileri programının etkililiğinin belirlenmesi. İlköğretim Online, 15(2), 529-547.
  • Kurnaz Adıbatmaz, F. B., ve Kutlu, Ö. (2020). Bilimsel düşünme becerilerinin ölçülmesi. Ankara: Pegem Akademik Yayıncılık.
  • Landis, J. R. & KOCH, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  • Lawson, A. E. (1993). Deductive reasoning, brain maturation, and science concept acquisition: Are they linked? Journal of College Science Teaching, 28, 401–411. https://doi.org/10.1002/tea.3660300904
  • Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of Research in Science Teaching , 42(6), 716– 740. https://doi.org/10.1002/tea.20067
  • Mechling, K. R., ve Oliver, D. L. (1983). Science teaches basic skills. Handbook I. Project for Promoting Science among Elementary School Principals. Washington: National Science Foundation.
  • Millî Eğitim Bakanlığı. Millî Eğitim Bakanlığı 2023 Eğitim Vizyonu. http://2023vizyonu.meb.gov.tr/ adresinden 01.09.2021 tarihinde alınmıştır.
  • Morris, B. J., Croker, S., Zimmerman, C., Grill, D., ve Roming, C. (2013). Gaming science: the “Gamification” of scientific thinking. Frontiers in Psychology, 4(607), 1-16. https://doi.org/10.3389/fpsyg.2013.00607
  • Orion, N., ve Kali, Y. (2005). The effect of an earth-science learning program on students' scientific thinking skills. Journal of Geoscience Education, 53(4), 387-393. https://doi.org/10.5408/1089-9995-53.4.387
  • Özdemir, S. M. (2005). Üniversite öğrencilerinin eleştirel düşünme becerilerinin çeşitli değişkenler açısından değerlendirilmesi. Türk Eğitim Bilimleri Dergisi, 3(3), 297-316.
  • Piaget, J. (1985). The Equilibration of cognitive structures. Chicago: University of Chicago Press.
  • Piekny, J., ve Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain‐general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31(2), 153-179. https://doi.org/10.1111/j.2044-835X.2012.02082.x
  • Ramig, J. E, Bailer, J., ve Ramsey, J. M. (1995). Teaching science process skills. Morriston, NJ: Good Apple Inc.
  • Resmî Gazete. (1981, 11 4). 2547 Sayılı Yükseköğretim Kanunu. Resmî Gazete Sayısı: 17506: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=2547&MevzuatTur=1&MevzuatTertip=5 adresinden alındı
  • Ruffman, T., Perner, J., Olson, D. R., ve Doherty, M. (1993). Reflecting on scientific thinking: children's understanding of the hypothesis-evidence relation. Child Development, 64(6), 1617-1636. https://doi.org/10.1111/j.1467-8624.1993.tb04203.x
  • Sodian, B., Zaitchik, D., ve Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence. Child Development, 62(4), 753– 766. https://doi.org/10.2307/1131175
  • Stevens, C., ve Witkow, M. R. (2014). Training scientific thinking skills: Evidence from an mcat 2015-aligned classroom module. Teaching of Psychology, 41(2), 115-121. https://doi.org/10.1177/0098628314530341
  • Tay, B. (2005). Process skills in science. Malaysia: Pearson Longman.
  • Temiz, B. K. (2020). Assessing skills of identifying variables and formulating hypotheses using scenario-based multiple-choice questions. ınternational Journal of Assessment Tools in Education, (7)1, 1–17. https://dx.doi.org/10.21449/ijate.561895
  • Temiz, B. K., & Tan, M. (2009). Lise 1. sınıf öğrencilerinin değişkenleri belirleme ve hipotez kurma becerileri. Kastamonu Eğitim Dergisi, 17(1), 195-202.
  • Widia, Sartina, F., Irawan, A., Syafrudin, Armansyah, Nurdiana, Hunaepi, Sapnowandi, Prayogi, S., ve Asy’ari, M. (2021). The effectiveness of guided inquiry learning tools in increasing students’ activities and creative thinking skills. The 10th International Conference on Theoretical and Applied Physics (ICTAP2020) (s. 1-6). West Nusa Tenggara: Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1816/1/012102
  • Wu, Y. T., ve Tsai, C. C. (2007). High school students’ informal reasoning on a socio‐scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(9), 1163-1187. https://doi.org/10.1080/09500690601083375.
  • Yang, F. Y. (2004). Exploring high school students' use of theory and evidence in an everyday context: the role of scientific thinking in environmental science decision‐making. International Journal of Science Education, 26(11), 1345-1364. https://doi.org/10.1080/0950069042000205404.
  • Yıldırım, C. (2020). Bilim felsefesi (Cilt 22. Basım). İstanbul: Remzi Kitabevi.
  • Zimbardi, K., Bugarcic, A., Colthorpe, K., Good, J. P., ve Lluka, L. (2013). A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students. Advances in Physiology Education, 303-315. https://doi.org/10.1152/advan.00082.2012
  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172-223. https://doi.org/10.1016/j.dr.2006.12.001
  • Zimmerman, C., & Klahr, D. (2018). Development of scientific thinking. In J. T. Wixted (Eds.), Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Fourth Edition (s. 1-25). John Wiley & Sons.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Uğur Hassamancıoğlu 0000-0003-4108-2885

Fatma Betül Kurnaz Adıbatmaz 0000-0002-7042-2159

Yayımlanma Tarihi 11 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 51 Sayı: 236

Kaynak Göster

APA Hassamancıoğlu, U., & Kurnaz Adıbatmaz, F. B. (2022). Açık Uçlu Madde Örnekleriyle Hipotez Kurma ve Deney Planlama Becerilerinin Değerlendirilmesi. Milli Eğitim Dergisi, 51(236), 3359-3392. https://doi.org/10.37669/milliegitim.990089