Research Article
BibTex RIS Cite
Year 2023, , 204 - 215, 25.12.2023
https://doi.org/10.51354/mjen.1312700

Abstract

References

  • [1]. Su, M., Wang, Q., Li, R., Wang, L. "Per Capita Renewable Energy Consumption in 116 Countries: The Effects of Urbanization, Industrialization, Gdp, Aging, and Trade Openness", Energy, 254, (2022), 124289; Li, W., Yu, X., Hu, N., Huang, F., Wang, J., Peng, Q. "Study on the Relationship between Fossil Energy Consumption and Carbon Emission in Sichuan Province", Energy Reports, 8, (2022), 53-62.
  • [2]. Nguyen, H. Q., Shabani, B. "Proton Exchange Membrane Fuel Cells Heat Recovery Opportunities for Combined Heating/Cooling and Power Applications", Energy Conversion Management, 204, (2020), 112328; Jamil, A., Rafiq, S., Iqbal, T., Khan, H. A. A., Khan, H. M., Azeem, B., Mustafa, M., Hanbazazah, A. S. "Current Status and Future Perspectives of Proton Exchange Membranes for Hydrogen Fuel Cells", Chemosphere, (2022), 135204; Yeetsorn, R., Maiket, Y., Kaewmanee, W. "The Observation of Supercapacitor Effects on Pemfc–Supercapacitor Hybridization Performance through Voltage Degradation and Electrochemical Processes", RSC advances, 10, (2020), 13100-13111.
  • [3]. Wan, Z., Tao, Y., Shao, J., Zhang, Y., You, H. "Ammonia as an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide Fuel Cells", Energy Conversion Management, 228, (2021), 113729; Li, M., Bai, Y., Zhang, C., Song, Y., Jiang, S., Grouset, D., Zhang, M. "Review on the Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle", International Journal of Hydrogen Energy, 44, (2019), 10677-10693.
  • [4]. Ulas, B., Caglar, A., Kivrak, A., Kivrak, H. "Atomic Molar Ratio Optimization of Carbon Nanotube Supported Pdauco Catalysts for Ethylene Glycol and Methanol Electrooxidation in Alkaline Media", Chemical Papers, 73, (2019), 425-434; Zhao, F., Zheng, L., Yuan, Q., Yang, X., Zhang, Q., Xu, H., Guo, Y., Yang, S., Zhou, Z., Gu, L. "Ultrathin Pdaubite Nanosheets as High‐Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device", Advanced Materials, 33, (2021), 2103383.
  • [5]. Zheng, Y., Wan, X., Cheng, X., Cheng, K., Dai, Z., Liu, Z. "Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells", Catalysts, 10, (2020), 166; Wang, K., Wang, F., Zhao, Y., Zhang, W. "Surface-Tailored Ptpdcu Ultrathin Nanowires as Advanced Electrocatalysts for Ethanol Oxidation and Oxygen Reduction Reaction in Direct Ethanol Fuel Cell", Journal of Energy Chemistry, 52, (2021), 251-261.
  • [6]. Caglar, A., Ulas, B., Cogenli, M. S., Yurtcan, A. B., Kivrak, H. "Synthesis and Characterization of Co, Zn, Mn, V Modified Pd Formic Acid Fuel Cell Anode Catalysts", Journal of Electroanalytical Chemistry, 850, (2019), 113402; Ulas, B., Kivrak, A., Aktas, N., Kivrak, H. "Carbon Monoxide and Formic Acid Electrooxidation Study on Au Decorated Pd Catalysts Prepared Via Microwave Assisted Polyol Method", Fullerenes, Nanotubes Carbon Nanostructures, 27, (2019), 545-552.
  • [7]. Kaya, S., Yilmaz, Y., Er, O. F., Alpaslan, D., Ulas, B., Dudu, T. E., Kivrak, H. "Highly Active Rupd Bimetallic Catalysts for Sodium Borohydride Electrooxidation and Hydrolysis", Journal of Electronic Materials, 51, (2022), 403-411; Ulas, B., Alpaslan, D., Yilmaz, Y., Dudu, T. E., Er, O. F., Kivrak, H. "Disentangling the Enhanced Catalytic Activity on Ga Modified Ru Surfaces for Sodium Borohydride Electrooxidation", Surfaces Interfaces, 23, (2021), 100999.
  • [8]. Martinaiou, I., Videla, A. H. M., Weidler, N., Kübler, M., Wallace, W. D. Z., Paul, S., Wagner, S., Shahraei, A., Stark, R. W., Specchia, S. "Activity and Degradation Study of an Fe-Nc Catalyst for Orr in Direct Methanol Fuel Cell (Dmfc)", Applied Catalysis B: Environmental, 262, (2020), 118217; Ulas, B., Yagizatli, Y., Demir-Kivrak, H. (2022) Metal-Free Catalysts for Fuel Cell Applications, In Carbon-Based Metal Free Catalysts, pp 67-109, Elsevier.
  • [9]. Osman, S. H., Kamarudin, S. K., Basri, S., A. Karim, N. "Three-Dimensional Graphene Aerogel Supported on Efficient Anode Electrocatalyst for Methanol Electrooxidation in Acid Media", Catalysts, 13, (2023), 879.
  • [10]. Fadzillah, D., Kamarudin, S., Zainoodin, M., Masdar, M. "Critical Challenges in the System Development of Direct Alcohol Fuel Cells as Portable Power Supplies: An Overview", International Journal of Hydrogen Energy, 44, (2019), 3031-3054; Zakaria, Z., Kamarudin, S. K., Abd Wahid, K. A., Hassan, S. H. A. "The Progress of Fuel Cell for Malaysian Residential Consumption: Energy Status and Prospects to Introduction as a Renewable Power Generation System", Renewable Sustainable Energy Reviews, 144, (2021), 110984.
  • [11]. Zhang, Z., Tang, P., Wen, H., Wang, P. "Bicontinuous Nanoporous Ni-Fe Alloy as a Highly Active Catalyst for Hydrazine Electrooxidation", Journal of Alloys Compounds, 906, (2022), 164370; Askari, M. B., Salarizadeh, P., Beitollahi, H., Tajik, S., Eshghi, A., Azizi, S. "Electro-Oxidation of Hydrazine on Nife2o4-Rgo as a High-Performance Nano-Electrocatalyst in Alkaline Media", Materials Chemistry Physics, 275, (2022), 125313.
  • [12]. Luo, L., Cheng, J., Chen, S., Zhang, P., Chen, S., Tang, Z., Zeng, R., Xu, M., Hao, Y. "A near-Infrared Ratiometric Fluorescent Probe for Hydrazine and Its Application for Gaseous Sensing and Cell Imaging", Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 296, (2023), 122692.
  • [13]. Hosseini, M. G., Abdolmaleki, M., Daneshvari-Esfahlan, V. "Fabrication and Evaluation of the Performance of Co/Coniznag Nanoporous Structures as a Good Candidate for Using as Anode Catalyst in a Hydrazine Fuel Cell", Materials Technology, 34, (2019), 697-703.
  • [14]. Liu, W., Xie, J., Guo, Y., Lou, S., Gao, L., Tang, B. "Sulfurization-Induced Edge Amorphization in Copper–Nickel–Cobalt Layered Double Hydroxide Nanosheets Promoting Hydrazine Electro-Oxidation", Journal of Materials Chemistry A, 7, (2019), 24437-24444.
  • [15]. Feng, Z., Li, D., Wang, L., Sun, Q., Lu, P., Xing, P., An, M. "In Situ Grown Nanosheet Nizn Alloy on Ni Foam for High Performance Hydrazine Electrooxidation", Electrochimica Acta, 304, (2019), 275-281; Hwang, H., Hong, S., Kim, D.-H., Kang, M.-S., Park, J.-S., Uhm, S., Lee, J. "Optimistic Performance of Carbon-Free Hydrazine Fuel Cells Based on Controlled Electrode Structure and Water Management", Journal of Energy Chemistry, 51, (2020), 175-181.
  • [16]. Balčiūnaitė, A., Budrytė, E., Vaičiūnienė, J., Niaura, G., Kruusenberg, I., Kaare, K., Volperts, A., Dobele, G., Zurins, A., Tamašauskaitė-Tamašiūnaitė, L. "One-Pot Synthesis of Nitrogen-Doped Carbon Supported Mn-Co Nanoparticles for Hydrazine Oxidation", ECS Transactions, 97, (2020), 593.
  • [17]. Feng, Z., Zhang, H., Gao, B., Lu, P., Li, D., Xing, P. "Ni–Zn Nanosheet Anchored on Rgo as Bifunctional Electrocatalyst for Efficient Alkaline Water-to-Hydrogen Conversion Via Hydrazine Electrolysis", International Journal of Hydrogen Energy, 45, (2020), 19335-19343; Wang, T., Cao, X., Jiao, L. "Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules", Angewandte Chemie International Edition, (2022), e202213328.
  • [18]. Liu, X., Han, Y., Guo, Y., Zhao, X., Pan, D., Li, K., Wen, Z. "Electrochemical Hydrogen Generation by Oxygen Evolution Reaction‐Alternative Anodic Oxidation Reactions", Advanced Energy Sustainability Research, 3, (2022), 2200005.
  • [19]. Crisafulli, R., de Paula, D. F., Zignani, S. C., Spadaro, L., Palella, A., Boninelli, S., Dias, J. A., Linares, J. J. "Promoting Effect of Cu on Pd Applied to the Hydrazine Electro-Oxidation and Direct Hydrazine Fuel Cells", Catalysts, 12, (2022), 1639; Wang, W., Wang, Y., Liu, S., Yahia, M., Dong, Y., Lei, Z. "Carbon-Supported Phosphatized Cuni Nanoparticle Catalysts for Hydrazine Electrooxidation", International Journal of Hydrogen Energy, 44, (2019), 10637-10645; Jiang, H., Wang, Z., Kannan, P., Wang, H., Wang, R., Subramanian, P., Ji, S. "Grain Boundaries of Co (Oh) 2-Ni-Cu Nanosheets on the Cotton Fabric Substrate for Stable and Efficient Electro-Oxidation of Hydrazine", International Journal of Hydrogen Energy, 44, (2019), 24591-24603.
  • [20]. Feng, Z., Li, D., Wang, L., Sun, Q., Lu, P., Xing, P., An, M. J. E. A. "In Situ Grown Nanosheet Nizn Alloy on Ni Foam for High Performance Hydrazine Electrooxidation", 304, (2019), 275-281; Chen, C., Wen, H., Tang, P.-P., Wang, P. "Supported Ni@ Ni2p Core–Shell Nanotube Arrays on Ni Foam for Hydrazine Electrooxidation", ACS Sustainable Chemistry Engineering, 9, (2021), 4564-4570; Wen, H., Gan, L.-Y., Dai, H.-B., Wen, X.-P., Wu, L.-S., Wu, H., Wang, P. "In Situ Grown Ni Phosphide Nanowire Array on Ni Foam as a High-Performance Catalyst for Hydrazine Electrooxidation", Applied Catalysis B: Environmental, 241, (2019), 292-298.
  • [21]. Li, J., Dong, C., Guo, M., Gao, W., Kang, L., Lei, F., Hao, P., Xie, J., Tang, B. "Cerium-Induced Lattice Disordering in Co-Based Nanocatalysts Promoting the Hydrazine Electro-Oxidation Behavior", Chemical Communications, 58, (2022), 6845-6848; Feng, G., An, L., Li, B., Zuo, Y., Song, J., Ning, F., Jiang, N., Cheng, X., Zhang, Y., Xia, D. "Atomically Ordered Non-Precious Co3ta Intermetallic Nanoparticles as High-Performance Catalysts for Hydrazine Electrooxidation", Nature Communications, 10, (2019), 4514; Firdous, N., Janjua, N. K. "Coptx/Γ-Al2o3 Bimetallic Nanoalloys as Promising Catalysts for Hydrazine Electrooxidation", Heliyon, 5, (2019), e01380.
  • [22]. Kaya, S., Ulas, B., Duzenli, D., Onal, I., Er, O. F., Yilmaz, Y., Tezsevin, I., Kivrak, H. "Glucose Electrooxidation Modelling Studies on Carbon Nanotube Supported Pd Catalyst with Response Surface Methodology and Density Functional Theory", Journal of Physics and Chemistry of Solids, 168, (2022), 110810; Kaya, S., Ulas, B., Er, O. F., Yılmaz, Y., Kivrak, H. "Optimization of Electrode Preperation Conditions for Enhanced Glucose Electrooxidation on Pt/Cnt by Response Surface Methodology", Journal of Electronic Materials, 51, (2022), 2971-2981.
  • [23]. Yılmaz, Ş. "Facile Synthesis of Surfactant-Modified Layered Double Hydroxide Magnetic Hybrid Composite and Its Application for Bisphenol a Adsorption: Statistical Optimization of Operational Variables", Surfaces and Interfaces, 32, (2022), 102171.
  • [24]. Ulas, B., Caglar, A., Sahin, O., Kivrak, H. "Composition Dependent Activity of Pdagni Alloy Catalysts for Formic Acid Electrooxidation", Journal of Colloid and Interface Science, 532, (2018), 47-57.
  • [25]. Cao, Z., Chen, H., Zhu, S., Zhang, W., Wu, X., Shan, G., Ziener, U., Qi, D. "Preparation of Janus Pd/Sio2 Nanocomposite Particles in Inverse Miniemulsions", Langmuir, 31, (2015), 4341-4350.
  • [26]. Lima, C. C., Rodrigues, M. V., Neto, A. F., Zanata, C. R., Pires, C. T., Costa, L. S., Solla-Gullon, J., Fernandez, P. S. "Highly Active Ag/C Nanoparticles Containing Ultra-Low Quantities of Sub-Surface Pt for the Electrooxidation of Glycerol in Alkaline Media", Applied Catalysis B: Environmental, 279, (2020), 119369; Kopač Lautar, A., Bitenc, J., Rejec, T., Dominko, R., Filhol, J.-S., Doublet, M.-L. "Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent Dft Study", Journal of the American Chemical Society, 142, (2020), 5146-5153.
  • [27]. Qiu, C., Wang, S., Gao, R., Qin, J., Li, W., Wang, X., Zhai, Z., Tian, D., Song, Y. "Low-Temperature Synthesis of Pdo-Ceo2/C toward Efficient Oxygen Reduction Reaction", Materials Today Energy, 18, (2020), 100557; Kottayintavida, R., Gopalan, N. K. "Pd Modified Ni Nanowire as an Efficient Electro-Catalyst for Alcohol Oxidation Reaction", International Journal of Hydrogen Energy, 45, (2020), 8396-8404.
  • [28]. Hanifah, M. F. R., Jaafar, J., Othman, M., Ismail, A., Rahman, M., Yusof, N., Aziz, F. "One-Pot Synthesis of Efficient Reduced Graphene Oxide Supported Binary Pt-Pd Alloy Nanoparticles as Superior Electro-Catalyst and Its Electro-Catalytic Performance toward Methanol Electro-Oxidation Reaction in Direct Methanol Fuel Cell", Journal of Alloys Compounds, 793, (2019), 232-246; Wang, J., Sun, H.-b., Shah, S. A., Liu, C., Zhang, G.-y., Li, Z., Zhang, Q.-f., Han, M. "Palladium Nanoparticles Supported by Three-Dimensional Freestanding Electrodes for High-Performance Methanol Electro-Oxidation", International Journal of Hydrogen Energy, 45, (2020), 11089-11096.
  • [29]. Li, Q., Bai, A., Xue, Z., Zheng, Y., Sun, H. "Nitrogen and Sulfur Co-Doped Graphene Composite Electrode with High Electrocatalytic Activity for Vanadium Redox Flow Battery Application", Electrochimica Acta, 362, (2020), 137223.

Response surface methodology optimization of electrode modification parameters toward hydrazine electrooxidation on Pd/MWCNT/GCE

Year 2023, , 204 - 215, 25.12.2023
https://doi.org/10.51354/mjen.1312700

Abstract

In this study, MWCNT supported Pd (Pd/MWCNT) was synthesized by NaBH4 reduction method as catalyst for hydrazine electrooxidation reaction (HEOR). Characterization methods namely inductively coupled plasma mass spectrometry (ICP-MS), elemental mapping, and scanning electron microscopy with energy dispersive X-ray (SEM-EDX) were used to analyze the surface morphology and metal composition of the catalysts. The Pd/MWCNT catalyst's average particle size is estimated to be 6.35 nm based on SEM images. Glassy carbon electrode (GCE) modification parameters namely the amount of catalyst ink transferred to the GCE surface (Vs), ultrasonication time of the catalyst ink (tu), and the drying time of the Pd/MWCNT/GCE (td) were optimized by using response surface methodology as 4.92 μL, 1 min and 19.52 min, respectively. Experimental specific activity value for HEOR was obtained as 7.13 mA cm-2 with 2.59% deviation under optimum conditions. Optimization of electrode preparation conditions is an inexpensive and facile method that could be used to improve the performance of anode catalysts for fuel cells.

References

  • [1]. Su, M., Wang, Q., Li, R., Wang, L. "Per Capita Renewable Energy Consumption in 116 Countries: The Effects of Urbanization, Industrialization, Gdp, Aging, and Trade Openness", Energy, 254, (2022), 124289; Li, W., Yu, X., Hu, N., Huang, F., Wang, J., Peng, Q. "Study on the Relationship between Fossil Energy Consumption and Carbon Emission in Sichuan Province", Energy Reports, 8, (2022), 53-62.
  • [2]. Nguyen, H. Q., Shabani, B. "Proton Exchange Membrane Fuel Cells Heat Recovery Opportunities for Combined Heating/Cooling and Power Applications", Energy Conversion Management, 204, (2020), 112328; Jamil, A., Rafiq, S., Iqbal, T., Khan, H. A. A., Khan, H. M., Azeem, B., Mustafa, M., Hanbazazah, A. S. "Current Status and Future Perspectives of Proton Exchange Membranes for Hydrogen Fuel Cells", Chemosphere, (2022), 135204; Yeetsorn, R., Maiket, Y., Kaewmanee, W. "The Observation of Supercapacitor Effects on Pemfc–Supercapacitor Hybridization Performance through Voltage Degradation and Electrochemical Processes", RSC advances, 10, (2020), 13100-13111.
  • [3]. Wan, Z., Tao, Y., Shao, J., Zhang, Y., You, H. "Ammonia as an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide Fuel Cells", Energy Conversion Management, 228, (2021), 113729; Li, M., Bai, Y., Zhang, C., Song, Y., Jiang, S., Grouset, D., Zhang, M. "Review on the Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle", International Journal of Hydrogen Energy, 44, (2019), 10677-10693.
  • [4]. Ulas, B., Caglar, A., Kivrak, A., Kivrak, H. "Atomic Molar Ratio Optimization of Carbon Nanotube Supported Pdauco Catalysts for Ethylene Glycol and Methanol Electrooxidation in Alkaline Media", Chemical Papers, 73, (2019), 425-434; Zhao, F., Zheng, L., Yuan, Q., Yang, X., Zhang, Q., Xu, H., Guo, Y., Yang, S., Zhou, Z., Gu, L. "Ultrathin Pdaubite Nanosheets as High‐Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device", Advanced Materials, 33, (2021), 2103383.
  • [5]. Zheng, Y., Wan, X., Cheng, X., Cheng, K., Dai, Z., Liu, Z. "Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells", Catalysts, 10, (2020), 166; Wang, K., Wang, F., Zhao, Y., Zhang, W. "Surface-Tailored Ptpdcu Ultrathin Nanowires as Advanced Electrocatalysts for Ethanol Oxidation and Oxygen Reduction Reaction in Direct Ethanol Fuel Cell", Journal of Energy Chemistry, 52, (2021), 251-261.
  • [6]. Caglar, A., Ulas, B., Cogenli, M. S., Yurtcan, A. B., Kivrak, H. "Synthesis and Characterization of Co, Zn, Mn, V Modified Pd Formic Acid Fuel Cell Anode Catalysts", Journal of Electroanalytical Chemistry, 850, (2019), 113402; Ulas, B., Kivrak, A., Aktas, N., Kivrak, H. "Carbon Monoxide and Formic Acid Electrooxidation Study on Au Decorated Pd Catalysts Prepared Via Microwave Assisted Polyol Method", Fullerenes, Nanotubes Carbon Nanostructures, 27, (2019), 545-552.
  • [7]. Kaya, S., Yilmaz, Y., Er, O. F., Alpaslan, D., Ulas, B., Dudu, T. E., Kivrak, H. "Highly Active Rupd Bimetallic Catalysts for Sodium Borohydride Electrooxidation and Hydrolysis", Journal of Electronic Materials, 51, (2022), 403-411; Ulas, B., Alpaslan, D., Yilmaz, Y., Dudu, T. E., Er, O. F., Kivrak, H. "Disentangling the Enhanced Catalytic Activity on Ga Modified Ru Surfaces for Sodium Borohydride Electrooxidation", Surfaces Interfaces, 23, (2021), 100999.
  • [8]. Martinaiou, I., Videla, A. H. M., Weidler, N., Kübler, M., Wallace, W. D. Z., Paul, S., Wagner, S., Shahraei, A., Stark, R. W., Specchia, S. "Activity and Degradation Study of an Fe-Nc Catalyst for Orr in Direct Methanol Fuel Cell (Dmfc)", Applied Catalysis B: Environmental, 262, (2020), 118217; Ulas, B., Yagizatli, Y., Demir-Kivrak, H. (2022) Metal-Free Catalysts for Fuel Cell Applications, In Carbon-Based Metal Free Catalysts, pp 67-109, Elsevier.
  • [9]. Osman, S. H., Kamarudin, S. K., Basri, S., A. Karim, N. "Three-Dimensional Graphene Aerogel Supported on Efficient Anode Electrocatalyst for Methanol Electrooxidation in Acid Media", Catalysts, 13, (2023), 879.
  • [10]. Fadzillah, D., Kamarudin, S., Zainoodin, M., Masdar, M. "Critical Challenges in the System Development of Direct Alcohol Fuel Cells as Portable Power Supplies: An Overview", International Journal of Hydrogen Energy, 44, (2019), 3031-3054; Zakaria, Z., Kamarudin, S. K., Abd Wahid, K. A., Hassan, S. H. A. "The Progress of Fuel Cell for Malaysian Residential Consumption: Energy Status and Prospects to Introduction as a Renewable Power Generation System", Renewable Sustainable Energy Reviews, 144, (2021), 110984.
  • [11]. Zhang, Z., Tang, P., Wen, H., Wang, P. "Bicontinuous Nanoporous Ni-Fe Alloy as a Highly Active Catalyst for Hydrazine Electrooxidation", Journal of Alloys Compounds, 906, (2022), 164370; Askari, M. B., Salarizadeh, P., Beitollahi, H., Tajik, S., Eshghi, A., Azizi, S. "Electro-Oxidation of Hydrazine on Nife2o4-Rgo as a High-Performance Nano-Electrocatalyst in Alkaline Media", Materials Chemistry Physics, 275, (2022), 125313.
  • [12]. Luo, L., Cheng, J., Chen, S., Zhang, P., Chen, S., Tang, Z., Zeng, R., Xu, M., Hao, Y. "A near-Infrared Ratiometric Fluorescent Probe for Hydrazine and Its Application for Gaseous Sensing and Cell Imaging", Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 296, (2023), 122692.
  • [13]. Hosseini, M. G., Abdolmaleki, M., Daneshvari-Esfahlan, V. "Fabrication and Evaluation of the Performance of Co/Coniznag Nanoporous Structures as a Good Candidate for Using as Anode Catalyst in a Hydrazine Fuel Cell", Materials Technology, 34, (2019), 697-703.
  • [14]. Liu, W., Xie, J., Guo, Y., Lou, S., Gao, L., Tang, B. "Sulfurization-Induced Edge Amorphization in Copper–Nickel–Cobalt Layered Double Hydroxide Nanosheets Promoting Hydrazine Electro-Oxidation", Journal of Materials Chemistry A, 7, (2019), 24437-24444.
  • [15]. Feng, Z., Li, D., Wang, L., Sun, Q., Lu, P., Xing, P., An, M. "In Situ Grown Nanosheet Nizn Alloy on Ni Foam for High Performance Hydrazine Electrooxidation", Electrochimica Acta, 304, (2019), 275-281; Hwang, H., Hong, S., Kim, D.-H., Kang, M.-S., Park, J.-S., Uhm, S., Lee, J. "Optimistic Performance of Carbon-Free Hydrazine Fuel Cells Based on Controlled Electrode Structure and Water Management", Journal of Energy Chemistry, 51, (2020), 175-181.
  • [16]. Balčiūnaitė, A., Budrytė, E., Vaičiūnienė, J., Niaura, G., Kruusenberg, I., Kaare, K., Volperts, A., Dobele, G., Zurins, A., Tamašauskaitė-Tamašiūnaitė, L. "One-Pot Synthesis of Nitrogen-Doped Carbon Supported Mn-Co Nanoparticles for Hydrazine Oxidation", ECS Transactions, 97, (2020), 593.
  • [17]. Feng, Z., Zhang, H., Gao, B., Lu, P., Li, D., Xing, P. "Ni–Zn Nanosheet Anchored on Rgo as Bifunctional Electrocatalyst for Efficient Alkaline Water-to-Hydrogen Conversion Via Hydrazine Electrolysis", International Journal of Hydrogen Energy, 45, (2020), 19335-19343; Wang, T., Cao, X., Jiao, L. "Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules", Angewandte Chemie International Edition, (2022), e202213328.
  • [18]. Liu, X., Han, Y., Guo, Y., Zhao, X., Pan, D., Li, K., Wen, Z. "Electrochemical Hydrogen Generation by Oxygen Evolution Reaction‐Alternative Anodic Oxidation Reactions", Advanced Energy Sustainability Research, 3, (2022), 2200005.
  • [19]. Crisafulli, R., de Paula, D. F., Zignani, S. C., Spadaro, L., Palella, A., Boninelli, S., Dias, J. A., Linares, J. J. "Promoting Effect of Cu on Pd Applied to the Hydrazine Electro-Oxidation and Direct Hydrazine Fuel Cells", Catalysts, 12, (2022), 1639; Wang, W., Wang, Y., Liu, S., Yahia, M., Dong, Y., Lei, Z. "Carbon-Supported Phosphatized Cuni Nanoparticle Catalysts for Hydrazine Electrooxidation", International Journal of Hydrogen Energy, 44, (2019), 10637-10645; Jiang, H., Wang, Z., Kannan, P., Wang, H., Wang, R., Subramanian, P., Ji, S. "Grain Boundaries of Co (Oh) 2-Ni-Cu Nanosheets on the Cotton Fabric Substrate for Stable and Efficient Electro-Oxidation of Hydrazine", International Journal of Hydrogen Energy, 44, (2019), 24591-24603.
  • [20]. Feng, Z., Li, D., Wang, L., Sun, Q., Lu, P., Xing, P., An, M. J. E. A. "In Situ Grown Nanosheet Nizn Alloy on Ni Foam for High Performance Hydrazine Electrooxidation", 304, (2019), 275-281; Chen, C., Wen, H., Tang, P.-P., Wang, P. "Supported Ni@ Ni2p Core–Shell Nanotube Arrays on Ni Foam for Hydrazine Electrooxidation", ACS Sustainable Chemistry Engineering, 9, (2021), 4564-4570; Wen, H., Gan, L.-Y., Dai, H.-B., Wen, X.-P., Wu, L.-S., Wu, H., Wang, P. "In Situ Grown Ni Phosphide Nanowire Array on Ni Foam as a High-Performance Catalyst for Hydrazine Electrooxidation", Applied Catalysis B: Environmental, 241, (2019), 292-298.
  • [21]. Li, J., Dong, C., Guo, M., Gao, W., Kang, L., Lei, F., Hao, P., Xie, J., Tang, B. "Cerium-Induced Lattice Disordering in Co-Based Nanocatalysts Promoting the Hydrazine Electro-Oxidation Behavior", Chemical Communications, 58, (2022), 6845-6848; Feng, G., An, L., Li, B., Zuo, Y., Song, J., Ning, F., Jiang, N., Cheng, X., Zhang, Y., Xia, D. "Atomically Ordered Non-Precious Co3ta Intermetallic Nanoparticles as High-Performance Catalysts for Hydrazine Electrooxidation", Nature Communications, 10, (2019), 4514; Firdous, N., Janjua, N. K. "Coptx/Γ-Al2o3 Bimetallic Nanoalloys as Promising Catalysts for Hydrazine Electrooxidation", Heliyon, 5, (2019), e01380.
  • [22]. Kaya, S., Ulas, B., Duzenli, D., Onal, I., Er, O. F., Yilmaz, Y., Tezsevin, I., Kivrak, H. "Glucose Electrooxidation Modelling Studies on Carbon Nanotube Supported Pd Catalyst with Response Surface Methodology and Density Functional Theory", Journal of Physics and Chemistry of Solids, 168, (2022), 110810; Kaya, S., Ulas, B., Er, O. F., Yılmaz, Y., Kivrak, H. "Optimization of Electrode Preperation Conditions for Enhanced Glucose Electrooxidation on Pt/Cnt by Response Surface Methodology", Journal of Electronic Materials, 51, (2022), 2971-2981.
  • [23]. Yılmaz, Ş. "Facile Synthesis of Surfactant-Modified Layered Double Hydroxide Magnetic Hybrid Composite and Its Application for Bisphenol a Adsorption: Statistical Optimization of Operational Variables", Surfaces and Interfaces, 32, (2022), 102171.
  • [24]. Ulas, B., Caglar, A., Sahin, O., Kivrak, H. "Composition Dependent Activity of Pdagni Alloy Catalysts for Formic Acid Electrooxidation", Journal of Colloid and Interface Science, 532, (2018), 47-57.
  • [25]. Cao, Z., Chen, H., Zhu, S., Zhang, W., Wu, X., Shan, G., Ziener, U., Qi, D. "Preparation of Janus Pd/Sio2 Nanocomposite Particles in Inverse Miniemulsions", Langmuir, 31, (2015), 4341-4350.
  • [26]. Lima, C. C., Rodrigues, M. V., Neto, A. F., Zanata, C. R., Pires, C. T., Costa, L. S., Solla-Gullon, J., Fernandez, P. S. "Highly Active Ag/C Nanoparticles Containing Ultra-Low Quantities of Sub-Surface Pt for the Electrooxidation of Glycerol in Alkaline Media", Applied Catalysis B: Environmental, 279, (2020), 119369; Kopač Lautar, A., Bitenc, J., Rejec, T., Dominko, R., Filhol, J.-S., Doublet, M.-L. "Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent Dft Study", Journal of the American Chemical Society, 142, (2020), 5146-5153.
  • [27]. Qiu, C., Wang, S., Gao, R., Qin, J., Li, W., Wang, X., Zhai, Z., Tian, D., Song, Y. "Low-Temperature Synthesis of Pdo-Ceo2/C toward Efficient Oxygen Reduction Reaction", Materials Today Energy, 18, (2020), 100557; Kottayintavida, R., Gopalan, N. K. "Pd Modified Ni Nanowire as an Efficient Electro-Catalyst for Alcohol Oxidation Reaction", International Journal of Hydrogen Energy, 45, (2020), 8396-8404.
  • [28]. Hanifah, M. F. R., Jaafar, J., Othman, M., Ismail, A., Rahman, M., Yusof, N., Aziz, F. "One-Pot Synthesis of Efficient Reduced Graphene Oxide Supported Binary Pt-Pd Alloy Nanoparticles as Superior Electro-Catalyst and Its Electro-Catalytic Performance toward Methanol Electro-Oxidation Reaction in Direct Methanol Fuel Cell", Journal of Alloys Compounds, 793, (2019), 232-246; Wang, J., Sun, H.-b., Shah, S. A., Liu, C., Zhang, G.-y., Li, Z., Zhang, Q.-f., Han, M. "Palladium Nanoparticles Supported by Three-Dimensional Freestanding Electrodes for High-Performance Methanol Electro-Oxidation", International Journal of Hydrogen Energy, 45, (2020), 11089-11096.
  • [29]. Li, Q., Bai, A., Xue, Z., Zheng, Y., Sun, H. "Nitrogen and Sulfur Co-Doped Graphene Composite Electrode with High Electrocatalytic Activity for Vanadium Redox Flow Battery Application", Electrochimica Acta, 362, (2020), 137223.
There are 29 citations in total.

Details

Primary Language English
Subjects Electrochemical Technologies
Journal Section Research Article
Authors

Berdan Ulaş 0000-0003-0650-0316

Publication Date December 25, 2023
Published in Issue Year 2023

Cite

APA Ulaş, B. (2023). Response surface methodology optimization of electrode modification parameters toward hydrazine electrooxidation on Pd/MWCNT/GCE. MANAS Journal of Engineering, 11(2), 204-215. https://doi.org/10.51354/mjen.1312700
AMA Ulaş B. Response surface methodology optimization of electrode modification parameters toward hydrazine electrooxidation on Pd/MWCNT/GCE. MJEN. December 2023;11(2):204-215. doi:10.51354/mjen.1312700
Chicago Ulaş, Berdan. “Response Surface Methodology Optimization of Electrode Modification Parameters Toward Hydrazine Electrooxidation on Pd/MWCNT/GCE”. MANAS Journal of Engineering 11, no. 2 (December 2023): 204-15. https://doi.org/10.51354/mjen.1312700.
EndNote Ulaş B (December 1, 2023) Response surface methodology optimization of electrode modification parameters toward hydrazine electrooxidation on Pd/MWCNT/GCE. MANAS Journal of Engineering 11 2 204–215.
IEEE B. Ulaş, “Response surface methodology optimization of electrode modification parameters toward hydrazine electrooxidation on Pd/MWCNT/GCE”, MJEN, vol. 11, no. 2, pp. 204–215, 2023, doi: 10.51354/mjen.1312700.
ISNAD Ulaş, Berdan. “Response Surface Methodology Optimization of Electrode Modification Parameters Toward Hydrazine Electrooxidation on Pd/MWCNT/GCE”. MANAS Journal of Engineering 11/2 (December 2023), 204-215. https://doi.org/10.51354/mjen.1312700.
JAMA Ulaş B. Response surface methodology optimization of electrode modification parameters toward hydrazine electrooxidation on Pd/MWCNT/GCE. MJEN. 2023;11:204–215.
MLA Ulaş, Berdan. “Response Surface Methodology Optimization of Electrode Modification Parameters Toward Hydrazine Electrooxidation on Pd/MWCNT/GCE”. MANAS Journal of Engineering, vol. 11, no. 2, 2023, pp. 204-15, doi:10.51354/mjen.1312700.
Vancouver Ulaş B. Response surface methodology optimization of electrode modification parameters toward hydrazine electrooxidation on Pd/MWCNT/GCE. MJEN. 2023;11(2):204-15.

Manas Journal of Engineering 

16155