Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 1, 23 - 29, 27.06.2025
https://doi.org/10.51354/mjen.1543960

Abstract

References

  • [1]. Ersoy B., Sariisik A., Dikmen S., Sariisik G., “Characterization of acidic pumice and determination of its electrokinetic properties in water”, Powder Technology, 197, (2010), 129–135.
  • [2]. Lura P., Bentz D.P., Lange D.A., Kovler K., Bentor A., “Pumice aggregates for internal water curing”, International RILEM Symposium, 22–24, (2004), 137–151.
  • [3]. Yazıcıoğlu S., Arıcı E., Gönen T., “Pomza taşının kullanım alanları ve ekonomiye etkisi”, F.Ü. DAUM Dergisi, 1, (2003), 118-123
  • [4]. Elmastas N., “A mine becoming increasingly important for economy of Turkey: Pumice”. International Journal of Social Research, 5, (2012), 197-206
  • [5]. Bodude M.A., Akano T.T., Owa A. F., ‘’Mechanical and microstructural characterization of rubber particle reinforced thermoplastic for automobile bumper application’’, MANAS Journal of Engineering, 7(2), (2019), 89-93.
  • [6]. Çoban O., Yilmaz T., “Volcanic particle materials in polymer composites: A review”, Journal of Materials Science, 57(36), (2022), 16989-17020.
  • [7]. Whitham A.G., Sparks R.S.J., “Pumice”, Bulletin of Volcanology, 48, (1986), 209-223.
  • [8]. Dayan O., Kilicer A., Bulut A., Ceylan E., Tayfun U., Uzun O., Zahmakiran M., Yurderi M., “Pumice-supported ruthenium nanoparticles as highly effective and recyclable catalyst in the hydrolysis of methylamine borane”, International Journal of Hydrogen Energy, 52, (2024), 1-10.
  • [9]. Acet Ö., “Investigation of BSA adsorption performances of metal ıon attached mineral particles embedded cryogel discs”, MANAS Journal of Engineering, 9, (2021), 65-71.
  • [10]. Hossain K.M., “Potential use of volcanic pumice as a construction material”, Journal of Materials in Civil Engineering, 16(6), (2004), 573- 577.
  • [11]. Kurt M., Gul M.S., Gul R., Aydin A.C., Kotan T., “The effect of pumice powder on the self compactability of pumice aggregate lightweight concrete”, Construction and Building Materials, 103, (2016), 36-46.
  • [12]. Sari D., Pasamehmetoglu A.G., “The effects of gradation and admixture on the pumice lightweight aggregate concrete”, Cement and Concrete Research, 35, (2005), 936–942.
  • [13]. Koyuncu M., “The influence of pumice dust on tensile, stiffness properties and flame retardant of epoxy/wood flour composites”, Journal of Tropical Forest Science, 30, (2018), 89-94.
  • [14]. Shahapurkar K., Zelalem Y.M., Chenrayan V., Soudagar M.E., Fouad Y., Kalam M.A., Kiran M.C., “Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites”, Polymer Engineering & Science, 64(3), (2024), 1071-1082.
  • [15]. Fleischer C.A. , Zupan M., “Mechanical performance of pumice- reinforced epoxy composites”, Journal of Composite Materials, 44, (2010), 2679-2696.
  • [16]. Kanbur Y., Tayfun U., ''Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites'', Sakarya University Journal of Science, 22, (2018), 333-339.
  • [17]. Almiron J., Roudet F., Duquesne S., ''Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites'', Journal of Fire Science, 37(4– 6), (2019), 434–451.
  • [18]. Sever K., Atagür M., Tunçalp M., Altay L., Seki Y., Sarıkanat M., ''The effect of pumice powder on mechanical and thermal properties of polypropylene'', Journal of Thermoplastic Composite Materials, 32, (2019), 1092-1106.
  • [19]. Wang C., Ajji A., ‘Ethylene scavenging film based on low-density polyethylene incorporating pumice and potassium permanganate and its application to preserve avocados’’, LWT, 172, (2022), 114200.
  • [20]. Han B., Sun Z., Chen Y., Tian F., Wang X., Lei Q., ''Space charge distribution in low-density polyethylene (LDPE)/pumice composite'', Proceedings of 9th International Conference on Properties and Applications of Dielectric Materials, China, (2009), 19-23.
  • [21]. Han B., Sun Z., Chen Y., Tian F., Wang X., Lei Q., ‘’Space charge distribution in Low-density Polyethylene (LDPE)/Pumice composite’’, IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, (2009), 969-972.
  • [22]. Kurtulmus E., Karaboyacı M., Yigitarslan S., ‘’Production and characterization of a composite insulation material from waste polyethylene teraphtalates’’, AIP Conference Proceedings, 1569, (2013), 487-491.
  • [23]. Sari N.H., Setyawan P.D., Thiagamani S.M.K., Suteja Tamimi R., Rangappa S.M., Siengchin S., ‘’Evaluation of mechanical, thermal and morphological properties of corn husk modified pumice powder reinforced polyester composites’’, Polymer Composites, 43(3), (2022), 1763-1771.
  • [24]. Jayakrishnan P., Ramesan M.T., ''Synthesis, characterization and properties of poly (vinyl alcohol)/chemically modified and unmodified pumice composites'', Journal of Chemical and Pharmaceutical Sciences, 1, (2016) 97-104.
  • [25]. Ramesan M.T., Jose C., Jayakrishnan P., Anilkumar T., ''Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles'', Polymer Composites, 39, (2018), 38-45.
  • [26]. Sarı A., Hekimoğlu G., Tyagi V.V., Sharma R.K., ‘’Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters’’, Energy, 207, (2020), 118242.
  • [27]. Sarı A., ‘’Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage’’, Energy and Buildings, 69, (2014), 184-192.
  • [28]. Dike A.S., ‘’Türk Pomza mineralinin modifikasyonu ve poli (laktik asit) bazli biyo-kompozit malzemelerinde eklenti olarak kullanimi’’, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), (2020), 111-117.
  • [29]. Koc S., ‘’Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization’’, MANAS Journal of Engineering, 8(2), (2020), 132-137.
  • [30]. Sahin A., Karsli N.G., Sinmazcelik T., ''Comparison of the mechanical, thermomechanical, thermal, and morphological properties of pumice and calcium carbonate‐filled poly (phenylene sulfide) composites'', Polymer Composites, 37, (2016), 3160-3166.
  • [31]. Bora M.Ö., Çoban O., Kutluk T., Fidan S., Sinmazçelik T., ''The influence of heat treatment process on mechanical properties of surface treated volcanic ash particles/polyphenylene sulfide composites'', Polymer Composites, 39, (2018), 1604–1611.
  • [32]. Sahin A., Yildiran Y., Avcu E., Fidan S., Sinmazcelik T., ''Mechanical and thermal properties of pumice powder filled PPS composites'', Acta Physica Polonica A, 2, (2014), 518-520.
  • [33]. Avcu E., Coban O., Bora M.O., Fidan S., Sinmazcelik T., Ersoy O., ''Possible use of volcanic ash as a filler in Polyphenylene Sulfide composites: thermal, mechanical, and erosive wear properties'', Polymer Composites, 35, (2014), 1826–1833.
  • [34]. Akkaya R., ''Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite'', Journal of Environmental Radioactivity, 120, (2013), 58-63.
  • [35]. Yılmaz K., Akgoz A., Cabuk M., Karaagac H., Karabulut O., Yavuz M., ''Electrical transport, optical and thermal properties of polyaniline– pumice composites'', Material Chemistry and Physics, 130, (2011), 956- 961.
  • [36]. Gok A., Gode F., Turkaslan B.E., ''Synthesis and characterization of polyaniline/pumice composite'', Material Science and Engineering B, 133, (2006), 20-25.
  • [37]. Rahmaniar S.T., Prasetya H.A., Marlina P., Purbaya M., Chalid M., Hasan A., ‘’The effect of pumice and clay composition in natural rubber-ethylene propylene diene monomer blends towards its curing characteristics and physic-mechanical properties’’, Material Science and Engineering, 980, (2020), 012003.
  • [38]. Ramesan M.T., George A., Jayakrishnan P., Kalaprasad G., ''Role of pumice particles in the thermal, electrical and mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) composites'', Journal of Thermal Analysis and Calorimetry, 126, (2016), 511-519.
  • [39]. El-Nemr K.F., Radi H., Helal R.H., ‘’Partial replacement of silica by naturally occurring pumice powder for enhancing mechanical and thermal properties of nitrile rubber cured by electron beam irradiation’’, Pigment & Resin Technology, 53(4), (2022), 442-449.
  • [40]. Alvarado S., Morales K., Srubar W., Billington S., ''Effects of natural porous additives on the tensile mechanical performance and moisture absorption behavior of PHBV-based composites for construction'', Stanford Undergrad Research Journal, 10, (2011), 30-35.
  • [41]. Tayfun Ü., Tirkeş S., Doğan M., Tirkeş S., Zahmakıran M., ‘’Comparative performance study of acidic pumice and basic pumice inclusions for acrylonitrile–butadiene–styrene-based composite filaments’’, 3D Printing and Additive Manufacturing, 11(1), (2024), 276- 286.
  • [42]. Soyaslan I.I., ''Thermal and sound insulation properties of pumice/polyurethane composite material'', Emerging Materials Research, 9(3), (2020), 859-867.
  • [43]. Akar A.Ö., Yıldız Ü.H., Tayfun Ü., "Halloysite nanotube loaded polyamide nanocomposites: Structural, morphological, mechanical, thermal and processing behaviors.", AIP Conference Proceedings. 2607(1), (2023), 070005.
  • [44]. Aksoy E., Tirkeş S., Tayfun Ü., Tirkeş S., ‘’Expanded perlite mineral as a natural additive used in polylactide-based biodegradable composites’’, Turkish Journal of Science and Technology, 19(1), (2023), 113-122.
  • [45]. Herrera M., Matuschek G., Kettrup A., ‘’Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI’’, Polymer Degradation and Stability, 78(2), (2002), 323-331.
  • [46]. Wei Z., Chen X., Jiao C., ‘’Thermal degradation and flame retardancy of fumaric acid in thermoplastic polyurethane elastomer’’, Polymers for Advanced Technologies, 30(2), (2019), 475-482.
  • [47]. Yurderi M., Tayfun Ü., Bulut A., ‘’Development of polyurethane elastomer-based bio-composites reinforced with basaltic pumice’’, Journal of the Institute of Science and Technology, 14(4), (2024), 1622- 1631.
  • [48]. Chu J., Xiang C., Sue H.J., Hollis, R.D., ‘’Scratch resistance of mineral‐filled polypropylene materials’’, Polymer Engineering & Science, 40(4), (2000), 944-955.

Experimental characterization of thermal, mechanical, physical and morphological performance of thermoplastic polyurethane composites containing acidic pumice

Year 2025, Volume: 13 Issue: 1, 23 - 29, 27.06.2025
https://doi.org/10.51354/mjen.1543960

Abstract

Pumice powder, with its porous structure and low density, is a metal support material in water purification, catalysis manufacturing, and light construction materials. Acidic pumice has a significant proportion of silica. In this study, it was aimed to increase the mechanical and physical performances, as well as the reduction in the specific gravity and cost values, with the addition of acidic pumice to the thermoplastic polyurethane (TPU) polymer, which is used in various sectors such as textile, logistics, construction, and medical applications. Acidic pumice powder was blended with TPU at 2.5, 5.0, 7.5, and 10.0 weight percentages via the melt blending technique for this aim. In addition to mechanical testing such as tensile and hardness, thermal gravimetric analysis, melt flow rate, and electron microscopy (SEM) characterization methods were used on injection-molded composite samples. The structure of the pumice powder was studied using SEM/energy diffraction X-rays. Results revealed that the inclusion of pumice reduces the tensile strength and percent elongation values of TPU, but the composite sample with 2.5% pumice produced virtually equal values to the reference polymer. The hardness of the pumice increased with the loading rate. The low percentage of pumice reinforcement improved TPU's thermal stability. The melt flow rate produced varying results at different pumice ratios. As the morphological qualities were studied using electron microscopy, it was determined that the pumice particles were homogeneously disseminated in the TPU phase when reinforced at 2.5% and 5.0%. Based on these findings, TPU-based composites with the lowest addition quantity of 2.5% pumice produced the best outcomes. The use of pumice-filled TPU composites in automotive and construction applications can be established effectively thanks to performance improvement in the properties of examined samples.

References

  • [1]. Ersoy B., Sariisik A., Dikmen S., Sariisik G., “Characterization of acidic pumice and determination of its electrokinetic properties in water”, Powder Technology, 197, (2010), 129–135.
  • [2]. Lura P., Bentz D.P., Lange D.A., Kovler K., Bentor A., “Pumice aggregates for internal water curing”, International RILEM Symposium, 22–24, (2004), 137–151.
  • [3]. Yazıcıoğlu S., Arıcı E., Gönen T., “Pomza taşının kullanım alanları ve ekonomiye etkisi”, F.Ü. DAUM Dergisi, 1, (2003), 118-123
  • [4]. Elmastas N., “A mine becoming increasingly important for economy of Turkey: Pumice”. International Journal of Social Research, 5, (2012), 197-206
  • [5]. Bodude M.A., Akano T.T., Owa A. F., ‘’Mechanical and microstructural characterization of rubber particle reinforced thermoplastic for automobile bumper application’’, MANAS Journal of Engineering, 7(2), (2019), 89-93.
  • [6]. Çoban O., Yilmaz T., “Volcanic particle materials in polymer composites: A review”, Journal of Materials Science, 57(36), (2022), 16989-17020.
  • [7]. Whitham A.G., Sparks R.S.J., “Pumice”, Bulletin of Volcanology, 48, (1986), 209-223.
  • [8]. Dayan O., Kilicer A., Bulut A., Ceylan E., Tayfun U., Uzun O., Zahmakiran M., Yurderi M., “Pumice-supported ruthenium nanoparticles as highly effective and recyclable catalyst in the hydrolysis of methylamine borane”, International Journal of Hydrogen Energy, 52, (2024), 1-10.
  • [9]. Acet Ö., “Investigation of BSA adsorption performances of metal ıon attached mineral particles embedded cryogel discs”, MANAS Journal of Engineering, 9, (2021), 65-71.
  • [10]. Hossain K.M., “Potential use of volcanic pumice as a construction material”, Journal of Materials in Civil Engineering, 16(6), (2004), 573- 577.
  • [11]. Kurt M., Gul M.S., Gul R., Aydin A.C., Kotan T., “The effect of pumice powder on the self compactability of pumice aggregate lightweight concrete”, Construction and Building Materials, 103, (2016), 36-46.
  • [12]. Sari D., Pasamehmetoglu A.G., “The effects of gradation and admixture on the pumice lightweight aggregate concrete”, Cement and Concrete Research, 35, (2005), 936–942.
  • [13]. Koyuncu M., “The influence of pumice dust on tensile, stiffness properties and flame retardant of epoxy/wood flour composites”, Journal of Tropical Forest Science, 30, (2018), 89-94.
  • [14]. Shahapurkar K., Zelalem Y.M., Chenrayan V., Soudagar M.E., Fouad Y., Kalam M.A., Kiran M.C., “Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites”, Polymer Engineering & Science, 64(3), (2024), 1071-1082.
  • [15]. Fleischer C.A. , Zupan M., “Mechanical performance of pumice- reinforced epoxy composites”, Journal of Composite Materials, 44, (2010), 2679-2696.
  • [16]. Kanbur Y., Tayfun U., ''Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites'', Sakarya University Journal of Science, 22, (2018), 333-339.
  • [17]. Almiron J., Roudet F., Duquesne S., ''Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites'', Journal of Fire Science, 37(4– 6), (2019), 434–451.
  • [18]. Sever K., Atagür M., Tunçalp M., Altay L., Seki Y., Sarıkanat M., ''The effect of pumice powder on mechanical and thermal properties of polypropylene'', Journal of Thermoplastic Composite Materials, 32, (2019), 1092-1106.
  • [19]. Wang C., Ajji A., ‘Ethylene scavenging film based on low-density polyethylene incorporating pumice and potassium permanganate and its application to preserve avocados’’, LWT, 172, (2022), 114200.
  • [20]. Han B., Sun Z., Chen Y., Tian F., Wang X., Lei Q., ''Space charge distribution in low-density polyethylene (LDPE)/pumice composite'', Proceedings of 9th International Conference on Properties and Applications of Dielectric Materials, China, (2009), 19-23.
  • [21]. Han B., Sun Z., Chen Y., Tian F., Wang X., Lei Q., ‘’Space charge distribution in Low-density Polyethylene (LDPE)/Pumice composite’’, IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, (2009), 969-972.
  • [22]. Kurtulmus E., Karaboyacı M., Yigitarslan S., ‘’Production and characterization of a composite insulation material from waste polyethylene teraphtalates’’, AIP Conference Proceedings, 1569, (2013), 487-491.
  • [23]. Sari N.H., Setyawan P.D., Thiagamani S.M.K., Suteja Tamimi R., Rangappa S.M., Siengchin S., ‘’Evaluation of mechanical, thermal and morphological properties of corn husk modified pumice powder reinforced polyester composites’’, Polymer Composites, 43(3), (2022), 1763-1771.
  • [24]. Jayakrishnan P., Ramesan M.T., ''Synthesis, characterization and properties of poly (vinyl alcohol)/chemically modified and unmodified pumice composites'', Journal of Chemical and Pharmaceutical Sciences, 1, (2016) 97-104.
  • [25]. Ramesan M.T., Jose C., Jayakrishnan P., Anilkumar T., ''Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles'', Polymer Composites, 39, (2018), 38-45.
  • [26]. Sarı A., Hekimoğlu G., Tyagi V.V., Sharma R.K., ‘’Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters’’, Energy, 207, (2020), 118242.
  • [27]. Sarı A., ‘’Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage’’, Energy and Buildings, 69, (2014), 184-192.
  • [28]. Dike A.S., ‘’Türk Pomza mineralinin modifikasyonu ve poli (laktik asit) bazli biyo-kompozit malzemelerinde eklenti olarak kullanimi’’, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), (2020), 111-117.
  • [29]. Koc S., ‘’Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization’’, MANAS Journal of Engineering, 8(2), (2020), 132-137.
  • [30]. Sahin A., Karsli N.G., Sinmazcelik T., ''Comparison of the mechanical, thermomechanical, thermal, and morphological properties of pumice and calcium carbonate‐filled poly (phenylene sulfide) composites'', Polymer Composites, 37, (2016), 3160-3166.
  • [31]. Bora M.Ö., Çoban O., Kutluk T., Fidan S., Sinmazçelik T., ''The influence of heat treatment process on mechanical properties of surface treated volcanic ash particles/polyphenylene sulfide composites'', Polymer Composites, 39, (2018), 1604–1611.
  • [32]. Sahin A., Yildiran Y., Avcu E., Fidan S., Sinmazcelik T., ''Mechanical and thermal properties of pumice powder filled PPS composites'', Acta Physica Polonica A, 2, (2014), 518-520.
  • [33]. Avcu E., Coban O., Bora M.O., Fidan S., Sinmazcelik T., Ersoy O., ''Possible use of volcanic ash as a filler in Polyphenylene Sulfide composites: thermal, mechanical, and erosive wear properties'', Polymer Composites, 35, (2014), 1826–1833.
  • [34]. Akkaya R., ''Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite'', Journal of Environmental Radioactivity, 120, (2013), 58-63.
  • [35]. Yılmaz K., Akgoz A., Cabuk M., Karaagac H., Karabulut O., Yavuz M., ''Electrical transport, optical and thermal properties of polyaniline– pumice composites'', Material Chemistry and Physics, 130, (2011), 956- 961.
  • [36]. Gok A., Gode F., Turkaslan B.E., ''Synthesis and characterization of polyaniline/pumice composite'', Material Science and Engineering B, 133, (2006), 20-25.
  • [37]. Rahmaniar S.T., Prasetya H.A., Marlina P., Purbaya M., Chalid M., Hasan A., ‘’The effect of pumice and clay composition in natural rubber-ethylene propylene diene monomer blends towards its curing characteristics and physic-mechanical properties’’, Material Science and Engineering, 980, (2020), 012003.
  • [38]. Ramesan M.T., George A., Jayakrishnan P., Kalaprasad G., ''Role of pumice particles in the thermal, electrical and mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) composites'', Journal of Thermal Analysis and Calorimetry, 126, (2016), 511-519.
  • [39]. El-Nemr K.F., Radi H., Helal R.H., ‘’Partial replacement of silica by naturally occurring pumice powder for enhancing mechanical and thermal properties of nitrile rubber cured by electron beam irradiation’’, Pigment & Resin Technology, 53(4), (2022), 442-449.
  • [40]. Alvarado S., Morales K., Srubar W., Billington S., ''Effects of natural porous additives on the tensile mechanical performance and moisture absorption behavior of PHBV-based composites for construction'', Stanford Undergrad Research Journal, 10, (2011), 30-35.
  • [41]. Tayfun Ü., Tirkeş S., Doğan M., Tirkeş S., Zahmakıran M., ‘’Comparative performance study of acidic pumice and basic pumice inclusions for acrylonitrile–butadiene–styrene-based composite filaments’’, 3D Printing and Additive Manufacturing, 11(1), (2024), 276- 286.
  • [42]. Soyaslan I.I., ''Thermal and sound insulation properties of pumice/polyurethane composite material'', Emerging Materials Research, 9(3), (2020), 859-867.
  • [43]. Akar A.Ö., Yıldız Ü.H., Tayfun Ü., "Halloysite nanotube loaded polyamide nanocomposites: Structural, morphological, mechanical, thermal and processing behaviors.", AIP Conference Proceedings. 2607(1), (2023), 070005.
  • [44]. Aksoy E., Tirkeş S., Tayfun Ü., Tirkeş S., ‘’Expanded perlite mineral as a natural additive used in polylactide-based biodegradable composites’’, Turkish Journal of Science and Technology, 19(1), (2023), 113-122.
  • [45]. Herrera M., Matuschek G., Kettrup A., ‘’Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI’’, Polymer Degradation and Stability, 78(2), (2002), 323-331.
  • [46]. Wei Z., Chen X., Jiao C., ‘’Thermal degradation and flame retardancy of fumaric acid in thermoplastic polyurethane elastomer’’, Polymers for Advanced Technologies, 30(2), (2019), 475-482.
  • [47]. Yurderi M., Tayfun Ü., Bulut A., ‘’Development of polyurethane elastomer-based bio-composites reinforced with basaltic pumice’’, Journal of the Institute of Science and Technology, 14(4), (2024), 1622- 1631.
  • [48]. Chu J., Xiang C., Sue H.J., Hollis, R.D., ‘’Scratch resistance of mineral‐filled polypropylene materials’’, Polymer Engineering & Science, 40(4), (2000), 944-955.
There are 48 citations in total.

Details

Primary Language English
Subjects Polymer Technologies, Polymers and Plastics
Journal Section Research Article
Authors

Ahmet Bulut 0000-0002-1697-8623

Ümit Tayfun 0000-0001-5978-5162

Mehmet Yurderi 0000-0002-0233-8940

Submission Date September 5, 2024
Acceptance Date February 13, 2025
Publication Date June 27, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Bulut, A., Tayfun, Ü., & Yurderi, M. (2025). Experimental characterization of thermal, mechanical, physical and morphological performance of thermoplastic polyurethane composites containing acidic pumice. MANAS Journal of Engineering, 13(1), 23-29. https://doi.org/10.51354/mjen.1543960
AMA Bulut A, Tayfun Ü, Yurderi M. Experimental characterization of thermal, mechanical, physical and morphological performance of thermoplastic polyurethane composites containing acidic pumice. MJEN. June 2025;13(1):23-29. doi:10.51354/mjen.1543960
Chicago Bulut, Ahmet, Ümit Tayfun, and Mehmet Yurderi. “Experimental Characterization of Thermal, Mechanical, Physical and Morphological Performance of Thermoplastic Polyurethane Composites Containing Acidic Pumice”. MANAS Journal of Engineering 13, no. 1 (June 2025): 23-29. https://doi.org/10.51354/mjen.1543960.
EndNote Bulut A, Tayfun Ü, Yurderi M (June 1, 2025) Experimental characterization of thermal, mechanical, physical and morphological performance of thermoplastic polyurethane composites containing acidic pumice. MANAS Journal of Engineering 13 1 23–29.
IEEE A. Bulut, Ü. Tayfun, and M. Yurderi, “Experimental characterization of thermal, mechanical, physical and morphological performance of thermoplastic polyurethane composites containing acidic pumice”, MJEN, vol. 13, no. 1, pp. 23–29, 2025, doi: 10.51354/mjen.1543960.
ISNAD Bulut, Ahmet et al. “Experimental Characterization of Thermal, Mechanical, Physical and Morphological Performance of Thermoplastic Polyurethane Composites Containing Acidic Pumice”. MANAS Journal of Engineering 13/1 (June2025), 23-29. https://doi.org/10.51354/mjen.1543960.
JAMA Bulut A, Tayfun Ü, Yurderi M. Experimental characterization of thermal, mechanical, physical and morphological performance of thermoplastic polyurethane composites containing acidic pumice. MJEN. 2025;13:23–29.
MLA Bulut, Ahmet et al. “Experimental Characterization of Thermal, Mechanical, Physical and Morphological Performance of Thermoplastic Polyurethane Composites Containing Acidic Pumice”. MANAS Journal of Engineering, vol. 13, no. 1, 2025, pp. 23-29, doi:10.51354/mjen.1543960.
Vancouver Bulut A, Tayfun Ü, Yurderi M. Experimental characterization of thermal, mechanical, physical and morphological performance of thermoplastic polyurethane composites containing acidic pumice. MJEN. 2025;13(1):23-9.

Manas Journal of Engineering 

16155