Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 2, 109 - 114, 29.12.2025
https://doi.org/10.51354/mjen.1666050

Abstract

References

  • [1]. Polyanin A.D., Zaitsev V.F. A.N. , “Handbook of Nonlinear Partial Differential Equations.” Chapman & Hall/CRC, 2004.
  • [2]. Evans L.C. “Partial Differential Equations sport”, 2nd ed. — Providence: AMS, 2010.
  • [3]. Samarskii A.A., Mikhailov A.P., “Principles of Mathematical Modelling: Ideas, Methods, Examples”, Taylor & Francis, 2001.
  • [4]. Egorov A.I., “Optimal control of thermal and diffusion processes”,Moscow:Nauka, 1978, P.37.
  • [5]. Krasnov M.L. “Integral equation”, - Moscow:Nauka, 1975, P.29.
  • [6]. Komkov Vadim. “Optimal Control Theory For The Damping Of Vibrations Of Simple Elastic Systems”, Springer-Verlag, Berlin-Heidelberg-New York, 1972
  • [7]. Lions J.L. Optimal Control of Systems Governed by Partial Differential Equations., Springer, 2001 (reprint).
  • [8]. Plotnikov V.I. “ Energy inequality and the property of overdetermination of system of eigenfunctions", Mathematical collection, 32, №4 (1968), pp.743-755.
  • [9]. Abdyldaeva E., Gulbarchyn Taalaibek kyzy, Аnarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition» Manas Journal of Engineering, Bishkek, 2019.
  • [10]. The Control Handbook: Control System Advanced Methods / Ed. W.S. Levine. — Boca-Raton; London; New York: CRC Press, 2010. — 942 p.
  • [11]. Li R., Teo K.L, Wong K.H., Duan G.R. “Control parameterization enhancing transform for optimal control of switched systems”, Mathematical and Computer Modelling. Vol. 43, N 1112. (2006), pp. 1393—1403.
  • [12]. Boldyrev V.I. “Piecewise linear approximation method for solving optimal control problems”, Differential Equations and Control Processes. №1. Pp.28-123.
  • [13]. Moiseev A.A., “Optimal control with discrete control actions”, Avtomatika and telemehanika. №9. (1991), pp.123-132.
  • [14]. Fesko O.V. “Algorithm for searching piecewise linear control with non-fixed switching times”. Bulletin of Buryat State University. Mathematics and informatics, №9 (2011), pp.52-56.
  • [15]. Aida – zade K.R. “Research and numerical solution of finite-difference approximations of distributed systems control problems”. Journal of Computational Mathematics and Mathematical Physics, V.29, №3 (1989), pp.346-354.
  • [16]. Ertushenko U.G. “Optimization and fast automatic differentiation”. Moscow: CC RAN, 2013. P.14.

Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes

Year 2025, Volume: 13 Issue: 2, 109 - 114, 29.12.2025
https://doi.org/10.51354/mjen.1666050

Abstract

In the article, the minimization problem is investigated of piecewise linear functional in non-linear optimization of oscillation processes described by Fredholm integro-differential equations. An algorithm has been developed for constructing a generalized solution to boundary value problem that describes the oscillation process. Using the maximum principle for systems with distributed parameters, optimality conditions are determined in the form of equality and inequality.

References

  • [1]. Polyanin A.D., Zaitsev V.F. A.N. , “Handbook of Nonlinear Partial Differential Equations.” Chapman & Hall/CRC, 2004.
  • [2]. Evans L.C. “Partial Differential Equations sport”, 2nd ed. — Providence: AMS, 2010.
  • [3]. Samarskii A.A., Mikhailov A.P., “Principles of Mathematical Modelling: Ideas, Methods, Examples”, Taylor & Francis, 2001.
  • [4]. Egorov A.I., “Optimal control of thermal and diffusion processes”,Moscow:Nauka, 1978, P.37.
  • [5]. Krasnov M.L. “Integral equation”, - Moscow:Nauka, 1975, P.29.
  • [6]. Komkov Vadim. “Optimal Control Theory For The Damping Of Vibrations Of Simple Elastic Systems”, Springer-Verlag, Berlin-Heidelberg-New York, 1972
  • [7]. Lions J.L. Optimal Control of Systems Governed by Partial Differential Equations., Springer, 2001 (reprint).
  • [8]. Plotnikov V.I. “ Energy inequality and the property of overdetermination of system of eigenfunctions", Mathematical collection, 32, №4 (1968), pp.743-755.
  • [9]. Abdyldaeva E., Gulbarchyn Taalaibek kyzy, Аnarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition» Manas Journal of Engineering, Bishkek, 2019.
  • [10]. The Control Handbook: Control System Advanced Methods / Ed. W.S. Levine. — Boca-Raton; London; New York: CRC Press, 2010. — 942 p.
  • [11]. Li R., Teo K.L, Wong K.H., Duan G.R. “Control parameterization enhancing transform for optimal control of switched systems”, Mathematical and Computer Modelling. Vol. 43, N 1112. (2006), pp. 1393—1403.
  • [12]. Boldyrev V.I. “Piecewise linear approximation method for solving optimal control problems”, Differential Equations and Control Processes. №1. Pp.28-123.
  • [13]. Moiseev A.A., “Optimal control with discrete control actions”, Avtomatika and telemehanika. №9. (1991), pp.123-132.
  • [14]. Fesko O.V. “Algorithm for searching piecewise linear control with non-fixed switching times”. Bulletin of Buryat State University. Mathematics and informatics, №9 (2011), pp.52-56.
  • [15]. Aida – zade K.R. “Research and numerical solution of finite-difference approximations of distributed systems control problems”. Journal of Computational Mathematics and Mathematical Physics, V.29, №3 (1989), pp.346-354.
  • [16]. Ertushenko U.G. “Optimization and fast automatic differentiation”. Moscow: CC RAN, 2013. P.14.
There are 16 citations in total.

Details

Primary Language English
Subjects Calculus of Variations, Mathematical Aspects of Systems Theory and Control Theory
Journal Section Research Article
Authors

Elmira Abdyldaeva 0000-0002-3874-9055

Omurbek Kalmamanov 0009-0008-2318-3010

Submission Date March 26, 2025
Acceptance Date November 25, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Abdyldaeva, E., & Kalmamanov, O. (2025). Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes. MANAS Journal of Engineering, 13(2), 109-114. https://doi.org/10.51354/mjen.1666050
AMA Abdyldaeva E, Kalmamanov O. Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes. MJEN. December 2025;13(2):109-114. doi:10.51354/mjen.1666050
Chicago Abdyldaeva, Elmira, and Omurbek Kalmamanov. “Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes”. MANAS Journal of Engineering 13, no. 2 (December 2025): 109-14. https://doi.org/10.51354/mjen.1666050.
EndNote Abdyldaeva E, Kalmamanov O (December 1, 2025) Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes. MANAS Journal of Engineering 13 2 109–114.
IEEE E. Abdyldaeva and O. Kalmamanov, “Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes”, MJEN, vol. 13, no. 2, pp. 109–114, 2025, doi: 10.51354/mjen.1666050.
ISNAD Abdyldaeva, Elmira - Kalmamanov, Omurbek. “Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes”. MANAS Journal of Engineering 13/2 (December2025), 109-114. https://doi.org/10.51354/mjen.1666050.
JAMA Abdyldaeva E, Kalmamanov O. Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes. MJEN. 2025;13:109–114.
MLA Abdyldaeva, Elmira and Omurbek Kalmamanov. “Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes”. MANAS Journal of Engineering, vol. 13, no. 2, 2025, pp. 109-14, doi:10.51354/mjen.1666050.
Vancouver Abdyldaeva E, Kalmamanov O. Optimality Conditions for Minimization Problem of Piecewise-Linear Functional in Optimization of the Oscillation Processes. MJEN. 2025;13(2):109-14.

Manas Journal of Engineering 

16155