Research Article
BibTex RIS Cite

A New Subclass of Univalent Functions Connected with Convolution defined via employing a Linear combination of two generalized Differential operators involving Sigmoid Function

Year 2020, , 82 - 96, 12.11.2020
https://doi.org/10.47087/mjm.791841

Abstract

By introducing an operator E_μ^n (β,λ,ω,φ;t) f_γ (z) via a linear combination of two generalized differential operators involving modified Sigmoid function, we defined and studied certain geometric properties of a new subclass T_γ D_(λ,ω) (α,β,ω,φ,t,λ,η,ξ;p:n) of analytic functions in the open unit disk $U.$ In particular, we give some properties of functions in this subclass such as; coefficient estimates, growth and distortion theorems, closure theorem and Fekete-Szego ̌ inequality for functions belonging to the subclass. Some earlier known results are special cases of results established for the new subclass defined.

References

  • Fadipe-Joseph, A.T. Oladipo and A.U. Ezeafulukwe, Modified Sigmoid function in univalent theory, Int. J. Math. Sci. Eng Appl. (IJMSEA). 7(7) (2013) 313-317.
  • O.A. Fadipe-Joseph, S.O. Olatunji, A.T. Oladipo, and B.O. Moses, Certain subclasses of univalent functions, ICWM 2014 Presentation Book, International Congress of Women Mathematicians Seoul, Korea. (2014) 154 -157.
  • G. Murugusundaramoorthy and T. Janani, Sigmoid Function in the Space of Univalent Pseudo Starlike Functions, Int. J. Pure Appl. Math. 101 (2015) 33-41.
  • O. A. Fadipe-Joseph, B. O. Moses and M. O. Oluwayemi, Certain New Classes of Analytic Functions Defined by using Sigmoid Function, Adv. Math. Sci. J. 5(1) (2016) 83-89.
  • M. O. Oluwayemi and O. A. Fadipe-Joseph, New Subclasses of Univalent Functions Defined Using a Linear Combination of Generalized Salagean and Ruscheweyh Operators, Int. J. Math. Anal. Opt.: Theory and Applications (2017) 187-200.
  • H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975) 109–116.
  • G.S. Sˇalˇagean, Subclasses of univalent functions, Lecture Notes in Mathematics, Springer-Verlag, Berlin. 1013 (1983) 362-372. F.M. Al-Oboudi, On univalent functions defined by a generalized Sˇalˇagean operator, Int. J. Math. Math. Sci. 27(44) (2004) 1429-1436.
  • O. T. Opoola, On a subclass of Univalent Functions defined by a Generalized Differential operator, Int. J. Math. Anal. 18(11) (2017) 869-876.
  • M. Darus and R.W. Ibrahim, On new subclasses of analytic functions involving generalized differential and integral operators, Eur. J. Pure Appl. Math. (EJPAM). 4 (2011) 59-66.
  • M. Darus and R.W. Ibrahim, On subclasses for generalized operators of complex order, Far East J. Math. Sci. 33(3) (2009) 299–308.
  • H.E. Darwish, Certain subclasses of analytic functions with negative coefficients defined by generalized Sˇalˇagean operator, Gen. Math. 15(4) (2007) 69–82.
  • S.B. Joshi and N.D. Sangle, New subclass of univalent functions defined by using generalized Sˇalˇagean operator, Indones Math. Soc. (MIHMI). 15 (2009) 79–89.
  • Sh. Najafzadeh1 and R. Vijaya, Application of Sˇalˇagean and Ruscheweyh operators on univalent functions with finitely many coefficients, Fract. Calc. Appl. Anal. 13(5) (2010) 1-5.
  • D. Raducanu, On a subclass of univalent functions defined by a generalized differential operator, Math. Reports 13. 63(2) (2011) 197–203.
  • S.F. Ramadan and M. Darus, Univalence criteria for a family of integral operators defined by generalized differential operator, Acta Univ. Apulensis Math. 25 (2011) 119–131.
  • M. Darus and I. Faisal, Some Subclasses of Analytic functions of complex order defined by new differential operator, Tamkang J. Math. 43(2) (2012) 223-242.
  • B. S. Keerthi, and M. Revathi, Certain new subclasses of analytic univalent functions in the unit disk, Global Journal of Science Frontier Research Mathematics and Decision Sciences . 13(1) (2013) 21-30.
  • G. W. Atshan, A. J. M. Khalaf and M. M. Mahdi, On new subclass of univalent function with negative coefficient defined by Hardamard product, Eur. J. Sci. Res. 119(3) (2014) 462-472.
  • I. Aldawish and M. Darus, New subclass of analytic functions associated with the generalized hypergeometric functions, Electronic Journal of Mathematical Analysis and Applications. 2(2) (2014) 163-171.
  • Sh. Najafzadeh1, A. Ebadian and E. Amini, Univalent functions with negative coefficients based on order of convolution consistence, Int. J. Appl. Math. 28(5) (2015) 579–591.
  • A. L. Alina, Properties on a subclass of univalent functions defined by using a multiplie rtransformation and Ruscheweyh derivative, Analele Universitatii Ovidius Constaţa-Seria Matematica. 23(1) (2015) 9-24.
  • G. Murugusundaramoorthy, Certain subclasses of univalent functions associated with a unification of the Srivastava-Attiya and Cho-Saigo-Srivastava operators, Novi Sad J. Math. 45(2) (2015) 59–76. A. Amourah and M. Darus, Some properties of a new class of univalent functions involving a new generalized differential operator with negative coefficients, Indian J. Sci. Tech. 36 (9) (2016) 1-7. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. 49 (1975) 109-115.
Year 2020, , 82 - 96, 12.11.2020
https://doi.org/10.47087/mjm.791841

Abstract

References

  • Fadipe-Joseph, A.T. Oladipo and A.U. Ezeafulukwe, Modified Sigmoid function in univalent theory, Int. J. Math. Sci. Eng Appl. (IJMSEA). 7(7) (2013) 313-317.
  • O.A. Fadipe-Joseph, S.O. Olatunji, A.T. Oladipo, and B.O. Moses, Certain subclasses of univalent functions, ICWM 2014 Presentation Book, International Congress of Women Mathematicians Seoul, Korea. (2014) 154 -157.
  • G. Murugusundaramoorthy and T. Janani, Sigmoid Function in the Space of Univalent Pseudo Starlike Functions, Int. J. Pure Appl. Math. 101 (2015) 33-41.
  • O. A. Fadipe-Joseph, B. O. Moses and M. O. Oluwayemi, Certain New Classes of Analytic Functions Defined by using Sigmoid Function, Adv. Math. Sci. J. 5(1) (2016) 83-89.
  • M. O. Oluwayemi and O. A. Fadipe-Joseph, New Subclasses of Univalent Functions Defined Using a Linear Combination of Generalized Salagean and Ruscheweyh Operators, Int. J. Math. Anal. Opt.: Theory and Applications (2017) 187-200.
  • H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975) 109–116.
  • G.S. Sˇalˇagean, Subclasses of univalent functions, Lecture Notes in Mathematics, Springer-Verlag, Berlin. 1013 (1983) 362-372. F.M. Al-Oboudi, On univalent functions defined by a generalized Sˇalˇagean operator, Int. J. Math. Math. Sci. 27(44) (2004) 1429-1436.
  • O. T. Opoola, On a subclass of Univalent Functions defined by a Generalized Differential operator, Int. J. Math. Anal. 18(11) (2017) 869-876.
  • M. Darus and R.W. Ibrahim, On new subclasses of analytic functions involving generalized differential and integral operators, Eur. J. Pure Appl. Math. (EJPAM). 4 (2011) 59-66.
  • M. Darus and R.W. Ibrahim, On subclasses for generalized operators of complex order, Far East J. Math. Sci. 33(3) (2009) 299–308.
  • H.E. Darwish, Certain subclasses of analytic functions with negative coefficients defined by generalized Sˇalˇagean operator, Gen. Math. 15(4) (2007) 69–82.
  • S.B. Joshi and N.D. Sangle, New subclass of univalent functions defined by using generalized Sˇalˇagean operator, Indones Math. Soc. (MIHMI). 15 (2009) 79–89.
  • Sh. Najafzadeh1 and R. Vijaya, Application of Sˇalˇagean and Ruscheweyh operators on univalent functions with finitely many coefficients, Fract. Calc. Appl. Anal. 13(5) (2010) 1-5.
  • D. Raducanu, On a subclass of univalent functions defined by a generalized differential operator, Math. Reports 13. 63(2) (2011) 197–203.
  • S.F. Ramadan and M. Darus, Univalence criteria for a family of integral operators defined by generalized differential operator, Acta Univ. Apulensis Math. 25 (2011) 119–131.
  • M. Darus and I. Faisal, Some Subclasses of Analytic functions of complex order defined by new differential operator, Tamkang J. Math. 43(2) (2012) 223-242.
  • B. S. Keerthi, and M. Revathi, Certain new subclasses of analytic univalent functions in the unit disk, Global Journal of Science Frontier Research Mathematics and Decision Sciences . 13(1) (2013) 21-30.
  • G. W. Atshan, A. J. M. Khalaf and M. M. Mahdi, On new subclass of univalent function with negative coefficient defined by Hardamard product, Eur. J. Sci. Res. 119(3) (2014) 462-472.
  • I. Aldawish and M. Darus, New subclass of analytic functions associated with the generalized hypergeometric functions, Electronic Journal of Mathematical Analysis and Applications. 2(2) (2014) 163-171.
  • Sh. Najafzadeh1, A. Ebadian and E. Amini, Univalent functions with negative coefficients based on order of convolution consistence, Int. J. Appl. Math. 28(5) (2015) 579–591.
  • A. L. Alina, Properties on a subclass of univalent functions defined by using a multiplie rtransformation and Ruscheweyh derivative, Analele Universitatii Ovidius Constaţa-Seria Matematica. 23(1) (2015) 9-24.
  • G. Murugusundaramoorthy, Certain subclasses of univalent functions associated with a unification of the Srivastava-Attiya and Cho-Saigo-Srivastava operators, Novi Sad J. Math. 45(2) (2015) 59–76. A. Amourah and M. Darus, Some properties of a new class of univalent functions involving a new generalized differential operator with negative coefficients, Indian J. Sci. Tech. 36 (9) (2016) 1-7. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. 49 (1975) 109-115.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ezekiel Abiodun Oyekan

Ibrahim Awolere

Publication Date November 12, 2020
Acceptance Date October 26, 2020
Published in Issue Year 2020

Cite

APA Oyekan, E. A., & Awolere, I. (2020). A New Subclass of Univalent Functions Connected with Convolution defined via employing a Linear combination of two generalized Differential operators involving Sigmoid Function. Maltepe Journal of Mathematics, 2(2), 82-96. https://doi.org/10.47087/mjm.791841
AMA Oyekan EA, Awolere I. A New Subclass of Univalent Functions Connected with Convolution defined via employing a Linear combination of two generalized Differential operators involving Sigmoid Function. Maltepe Journal of Mathematics. November 2020;2(2):82-96. doi:10.47087/mjm.791841
Chicago Oyekan, Ezekiel Abiodun, and Ibrahim Awolere. “A New Subclass of Univalent Functions Connected With Convolution Defined via Employing a Linear Combination of Two Generalized Differential Operators Involving Sigmoid Function”. Maltepe Journal of Mathematics 2, no. 2 (November 2020): 82-96. https://doi.org/10.47087/mjm.791841.
EndNote Oyekan EA, Awolere I (November 1, 2020) A New Subclass of Univalent Functions Connected with Convolution defined via employing a Linear combination of two generalized Differential operators involving Sigmoid Function. Maltepe Journal of Mathematics 2 2 82–96.
IEEE E. A. Oyekan and I. Awolere, “A New Subclass of Univalent Functions Connected with Convolution defined via employing a Linear combination of two generalized Differential operators involving Sigmoid Function”, Maltepe Journal of Mathematics, vol. 2, no. 2, pp. 82–96, 2020, doi: 10.47087/mjm.791841.
ISNAD Oyekan, Ezekiel Abiodun - Awolere, Ibrahim. “A New Subclass of Univalent Functions Connected With Convolution Defined via Employing a Linear Combination of Two Generalized Differential Operators Involving Sigmoid Function”. Maltepe Journal of Mathematics 2/2 (November 2020), 82-96. https://doi.org/10.47087/mjm.791841.
JAMA Oyekan EA, Awolere I. A New Subclass of Univalent Functions Connected with Convolution defined via employing a Linear combination of two generalized Differential operators involving Sigmoid Function. Maltepe Journal of Mathematics. 2020;2:82–96.
MLA Oyekan, Ezekiel Abiodun and Ibrahim Awolere. “A New Subclass of Univalent Functions Connected With Convolution Defined via Employing a Linear Combination of Two Generalized Differential Operators Involving Sigmoid Function”. Maltepe Journal of Mathematics, vol. 2, no. 2, 2020, pp. 82-96, doi:10.47087/mjm.791841.
Vancouver Oyekan EA, Awolere I. A New Subclass of Univalent Functions Connected with Convolution defined via employing a Linear combination of two generalized Differential operators involving Sigmoid Function. Maltepe Journal of Mathematics. 2020;2(2):82-96.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660