Research Article
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 1, 18 - 23, 09.04.2019

Abstract

References

  • [1] N.H.Abel, Recherches sur la srie 1+$m/x$+$[m(m-1)/ 1.2] x^{2}$+..., J., fr Math., 1 (1826), 311-339.
  • [2] C.G. Aras, A. Sonmez, H. Cakalli, An approach to soft functions, J. Math. Anal. 8, 2, 129-138,(2017).
  • [3] A.J.Badiozzaman and B.Thorpe, Some best possible Tauberian results for Abel and Cesaro summability, Bull. London Math. Soc., 28 3 (1996), 283-290. MR 97e:40003
  • [4] Naim L. Braha, H. Cakalli, A new type continuity for real functions, J. Math. Anal. 7, 6, 68-76, (2016).
  • [5] D. Burton, and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly 117, 4, 328-333, (2010).
  • [6] H. Cakalli, A Variation on Statistical Ward Continuity, Bull. Malays. Math. Sci. Soc. (2015).https://doi.org/10.1007/s40840-015-0195-0
  • [7] H. Çakalli, C.G. Aras, and A. Sonmez, Lacunary statistical ward continuity, AIP Conf. Proc.1676, Article Number: 020042, (2015). doi: 10.1063/1.4930468
  • [8] H. Cakalli and H. Kaplan, A variation on strongly lacunary ward continuity, J. Math. Anal.7, 3, 13-20, (2016).
  • [9] J.Connor, K.-G.Grosse-Erdmann, Sequential definitions of continuity for real functions,Rocky Mountain J. Math. 33, 1, 93-121, (2003).
  • [10] H. Çakallı, Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp. New York,ISSN 1085-3375, Volume 2008, Article ID 485706, (2008). doi:10.1155/2008/485706
  • [11] H. Çakallı, Sequential definitions of compactness, Appl. Math. Lett. 21, 6, 594-598, (2008).
  • [12] H. Çakallı, Forward continuity, J. Comput. Anal. Appl. 13, 2, 225-230, (2011).
  • [13] H. Çakallı, On $\Delta$-quasi-slowly oscillating sequences, Comput. Math. Appl. 62, 9, 3567-3574,(2011).
  • [14] H. Çakallı, Statistical quasi-Cauchy sequences, Math. Comput. Modelling, 54, no. 5-6, 1620-1624, (2011).
  • [15] H. Çakallı, $\delta$-quasi-Cauchy sequences, Math. Comput. Modelling, 53, no. 1-2, 397-401, (2011).
  • [16] H. Çakallı, Statistical ward continuity, Appl. Math. Lett. 24, 10, 1724-1728, (2011).
  • [17] H. Çakallı, On G-continuity, Comput. Math. Appl. 61, 2, 313-318, (2011).
  • [18] H. Çakallı, N-theta-Ward continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York,Volume 2012, Article ID 680456, 8 pp, (2012). doi:10.1155/2012/680456.
  • [19] H. Çakallı, Variations on quasi-Cauchy sequences, Filomat, 29, 1, 13-19, (2015).
  • [20] H. Çakallı, Upward and downward statistical continuities, Filomat, 29, 10, 2265-2273, (2015).
  • [21] H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics,1, 1, 1-8, (2019).
  • [22] H. Çakallı, A. Sonmez, and C. Genç, On an equivalence of topological vector space valuedcone metric spaces and metric spaces, Appl. Math. Lett. 25, 3, 429-433, (2012).
  • [23] H. Çakalli and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett. 22,11, 1665-1669, (2009).
  • [24] H. Çakallı, and H. Kaplan, A study on N-theta quasi-Cauchy sequences, Abstr. Appl. Anal.,Hindawi Publ. Corp., New York, Volume 2013, Article ID 836970 Article ID 836970, 4pages,(2013). doi:10.1155/2013/836970
  • [25] H. Cakalli, and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics,66, 2, 71-79, (2017). 10.1501/Commua1 0000000802
  • [26] H. Çakalli, and M.K. Khan, Summability in topological spaces, Appl. Math. Lett. 24, 348-352,(2011).
  • [27] H. Cakalli, R.F. Patterson, Functions preserving slowly oscillating double sequences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62, 2, vol. 2. 531-536, (2016).http://www.math.uaic.ro/ annalsmath/pdf-uri
  • [28] H. Cakalli, A. Sonmez, Slowly oscillating continuity in abstract metric spaces Filomat, 27,5, 925-930, (2013).
  • [29] H. Çakallı, A. Sönmez , and C.G. Aras, $\lambda$-statistically ward continuity, An. Stiint. Univ. Al.I. Cuza Iasi. Mat. Tomul LXII, 2017, Tom LXIII, f. 2, 308-3012, (2017). DOI: 10.1515/aicu-2015-0016
  • [30] H. Cakalli, İffet Taylan, A variation on Abel statistical ward continuity, AIP Conf. Proc.1676 Article number 020076
  • [31] I. Canak and M. Dik, New types of continuities, Abstr. Appl. Anal. 2010, Article ID 258980,6 pages, (2010).
  • [32] D. Djurcic, Ljubisa D.R. Kocinac, M.R. Zizovic, Double sequences and selections, Abstr.Appl. Anal. Art. ID 497594, 6 pp, (2012).
  • [33] A.E. Coskun, C.G Aras, H. Cakalli, and A. Sonmez, Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi:10.1063/1.4959713
  • [34] Fridy, J.A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • [35] J.A.Fridy and M.K.Khan, Statistical extensions of some classical Tauberian theorems, Proc.Amer. Math. Soc., 128 8 (2000), 2347-2355. MR 2000k:40003
  • [36] H. Kaplan, H. Cakalli, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9, 4371-4380, (2016).
  • [37] H. Kaplan, H. Cakalli, Variations on strongly lacunary quasi Cauchy sequences, AIP Conf.Proc. 1759 (2016) Article Number: 020051
  • [38] Ljubisa D.R. Kocinac, Selection properties in fuzzy metric spaces, Filomat, 26, 2, 305-312,(2012).
  • [39] S.K. Pal, E. Savas, and H. Cakalli, I-convergence on cone metric spaces, Sarajevo J. Math.9, 85-93, (2013).
  • [40] R.F. Patterson and H. Cakalli, Quasi Cauchy double sequences, Tbilisi Math. J., 8, 2, 211-219,(2015).
  • [41] A. Sonmez, On paracompactness in cone metric spaces, Appl. Math. Lett. 23, 494-497,(2010).
  • [42] I. Taylan, and H. Cakalli, Abel statistical delta quasi Cauchy sequences, AIP Conference Proceedings 2086, 030043 (2019); https://doi.org/10.1063/1.5095128 Published Online: 02 April 2019
  • [43] M. Unver, Abel summability in topological spaces, Monatsh Math 178 (2015) 633-643.https://doi.org/10.1007/s00605-014-0717-0
  • [44] R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions, With an appendix by Vallin and H. Cakalli, Acta Math. Univ. Comenianae, 25, 1, 71-78, (2011).
  • [45] T. Yaying, B. Hazarika, H. Cakalli, New results in quasi cone metric spaces, J. Math. ComputerSci. 16, 435-444, (2016).
  • [46] S. Yıldız, Istatistiksel boşluklu delta 2 quasi Cauchy dizileri, Sakarya University Journal of Science, 21, 6, (2017). DOI: 10.16984/saufenbilder.336128 , http://www.saujs.sakarya.edu.tr/issue/26999/336128 (2017).https://doi.org/10.1002/mma.4635
  • [47] S. Yildiz Variations on lacunary statistical quasi Cauchy sequences, International Conference of Mathematical Sciences, (ICMS 2018), Maltepe University, Istanbul, Turkey
  • [48] Ş. Yıldız, Lacunary statistical p-quasi Cauchy sequences, Maltepe Journal of Mathematics,1, 1, 9-17, (2019).

Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers

Year 2019, Volume: 1 Issue: 1, 18 - 23, 09.04.2019

Abstract

In this paper, we investigate the concept of Abel statistical delta quasi Cauchy sequences. A real function $f$ is called Abel statistically delta ward continuous it preserves Abel statistical delta quasi Cauchy sequences, where a sequence $(\alpha_{k})$ of points in $\mathbb{R}$ is called Abel statistically delta quasi Cauchy if $\lim_{x \to 1^{-}}(1-x)\sum_{k:|\Delta^{2} \alpha_{k}|\geq\varepsilon}^{}x^{k}=0$ for every $\varepsilon>0$, where $\Delta^{2}  \alpha_{k}=\alpha_{k+2}-2\alpha_{k+1}+\alpha_{k}$ for every $k\in{\mathbb{N}}$. Some other types of continuities are also studied and interesting results are obtained.

References

  • [1] N.H.Abel, Recherches sur la srie 1+$m/x$+$[m(m-1)/ 1.2] x^{2}$+..., J., fr Math., 1 (1826), 311-339.
  • [2] C.G. Aras, A. Sonmez, H. Cakalli, An approach to soft functions, J. Math. Anal. 8, 2, 129-138,(2017).
  • [3] A.J.Badiozzaman and B.Thorpe, Some best possible Tauberian results for Abel and Cesaro summability, Bull. London Math. Soc., 28 3 (1996), 283-290. MR 97e:40003
  • [4] Naim L. Braha, H. Cakalli, A new type continuity for real functions, J. Math. Anal. 7, 6, 68-76, (2016).
  • [5] D. Burton, and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly 117, 4, 328-333, (2010).
  • [6] H. Cakalli, A Variation on Statistical Ward Continuity, Bull. Malays. Math. Sci. Soc. (2015).https://doi.org/10.1007/s40840-015-0195-0
  • [7] H. Çakalli, C.G. Aras, and A. Sonmez, Lacunary statistical ward continuity, AIP Conf. Proc.1676, Article Number: 020042, (2015). doi: 10.1063/1.4930468
  • [8] H. Cakalli and H. Kaplan, A variation on strongly lacunary ward continuity, J. Math. Anal.7, 3, 13-20, (2016).
  • [9] J.Connor, K.-G.Grosse-Erdmann, Sequential definitions of continuity for real functions,Rocky Mountain J. Math. 33, 1, 93-121, (2003).
  • [10] H. Çakallı, Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp. New York,ISSN 1085-3375, Volume 2008, Article ID 485706, (2008). doi:10.1155/2008/485706
  • [11] H. Çakallı, Sequential definitions of compactness, Appl. Math. Lett. 21, 6, 594-598, (2008).
  • [12] H. Çakallı, Forward continuity, J. Comput. Anal. Appl. 13, 2, 225-230, (2011).
  • [13] H. Çakallı, On $\Delta$-quasi-slowly oscillating sequences, Comput. Math. Appl. 62, 9, 3567-3574,(2011).
  • [14] H. Çakallı, Statistical quasi-Cauchy sequences, Math. Comput. Modelling, 54, no. 5-6, 1620-1624, (2011).
  • [15] H. Çakallı, $\delta$-quasi-Cauchy sequences, Math. Comput. Modelling, 53, no. 1-2, 397-401, (2011).
  • [16] H. Çakallı, Statistical ward continuity, Appl. Math. Lett. 24, 10, 1724-1728, (2011).
  • [17] H. Çakallı, On G-continuity, Comput. Math. Appl. 61, 2, 313-318, (2011).
  • [18] H. Çakallı, N-theta-Ward continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York,Volume 2012, Article ID 680456, 8 pp, (2012). doi:10.1155/2012/680456.
  • [19] H. Çakallı, Variations on quasi-Cauchy sequences, Filomat, 29, 1, 13-19, (2015).
  • [20] H. Çakallı, Upward and downward statistical continuities, Filomat, 29, 10, 2265-2273, (2015).
  • [21] H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics,1, 1, 1-8, (2019).
  • [22] H. Çakallı, A. Sonmez, and C. Genç, On an equivalence of topological vector space valuedcone metric spaces and metric spaces, Appl. Math. Lett. 25, 3, 429-433, (2012).
  • [23] H. Çakalli and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett. 22,11, 1665-1669, (2009).
  • [24] H. Çakallı, and H. Kaplan, A study on N-theta quasi-Cauchy sequences, Abstr. Appl. Anal.,Hindawi Publ. Corp., New York, Volume 2013, Article ID 836970 Article ID 836970, 4pages,(2013). doi:10.1155/2013/836970
  • [25] H. Cakalli, and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics,66, 2, 71-79, (2017). 10.1501/Commua1 0000000802
  • [26] H. Çakalli, and M.K. Khan, Summability in topological spaces, Appl. Math. Lett. 24, 348-352,(2011).
  • [27] H. Cakalli, R.F. Patterson, Functions preserving slowly oscillating double sequences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62, 2, vol. 2. 531-536, (2016).http://www.math.uaic.ro/ annalsmath/pdf-uri
  • [28] H. Cakalli, A. Sonmez, Slowly oscillating continuity in abstract metric spaces Filomat, 27,5, 925-930, (2013).
  • [29] H. Çakallı, A. Sönmez , and C.G. Aras, $\lambda$-statistically ward continuity, An. Stiint. Univ. Al.I. Cuza Iasi. Mat. Tomul LXII, 2017, Tom LXIII, f. 2, 308-3012, (2017). DOI: 10.1515/aicu-2015-0016
  • [30] H. Cakalli, İffet Taylan, A variation on Abel statistical ward continuity, AIP Conf. Proc.1676 Article number 020076
  • [31] I. Canak and M. Dik, New types of continuities, Abstr. Appl. Anal. 2010, Article ID 258980,6 pages, (2010).
  • [32] D. Djurcic, Ljubisa D.R. Kocinac, M.R. Zizovic, Double sequences and selections, Abstr.Appl. Anal. Art. ID 497594, 6 pp, (2012).
  • [33] A.E. Coskun, C.G Aras, H. Cakalli, and A. Sonmez, Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi:10.1063/1.4959713
  • [34] Fridy, J.A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • [35] J.A.Fridy and M.K.Khan, Statistical extensions of some classical Tauberian theorems, Proc.Amer. Math. Soc., 128 8 (2000), 2347-2355. MR 2000k:40003
  • [36] H. Kaplan, H. Cakalli, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9, 4371-4380, (2016).
  • [37] H. Kaplan, H. Cakalli, Variations on strongly lacunary quasi Cauchy sequences, AIP Conf.Proc. 1759 (2016) Article Number: 020051
  • [38] Ljubisa D.R. Kocinac, Selection properties in fuzzy metric spaces, Filomat, 26, 2, 305-312,(2012).
  • [39] S.K. Pal, E. Savas, and H. Cakalli, I-convergence on cone metric spaces, Sarajevo J. Math.9, 85-93, (2013).
  • [40] R.F. Patterson and H. Cakalli, Quasi Cauchy double sequences, Tbilisi Math. J., 8, 2, 211-219,(2015).
  • [41] A. Sonmez, On paracompactness in cone metric spaces, Appl. Math. Lett. 23, 494-497,(2010).
  • [42] I. Taylan, and H. Cakalli, Abel statistical delta quasi Cauchy sequences, AIP Conference Proceedings 2086, 030043 (2019); https://doi.org/10.1063/1.5095128 Published Online: 02 April 2019
  • [43] M. Unver, Abel summability in topological spaces, Monatsh Math 178 (2015) 633-643.https://doi.org/10.1007/s00605-014-0717-0
  • [44] R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions, With an appendix by Vallin and H. Cakalli, Acta Math. Univ. Comenianae, 25, 1, 71-78, (2011).
  • [45] T. Yaying, B. Hazarika, H. Cakalli, New results in quasi cone metric spaces, J. Math. ComputerSci. 16, 435-444, (2016).
  • [46] S. Yıldız, Istatistiksel boşluklu delta 2 quasi Cauchy dizileri, Sakarya University Journal of Science, 21, 6, (2017). DOI: 10.16984/saufenbilder.336128 , http://www.saujs.sakarya.edu.tr/issue/26999/336128 (2017).https://doi.org/10.1002/mma.4635
  • [47] S. Yildiz Variations on lacunary statistical quasi Cauchy sequences, International Conference of Mathematical Sciences, (ICMS 2018), Maltepe University, Istanbul, Turkey
  • [48] Ş. Yıldız, Lacunary statistical p-quasi Cauchy sequences, Maltepe Journal of Mathematics,1, 1, 9-17, (2019).
There are 48 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

İffet Taylan

Publication Date April 9, 2019
Acceptance Date February 5, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Taylan, İ. (2019). Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers. Maltepe Journal of Mathematics, 1(1), 18-23.
AMA Taylan İ. Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers. Maltepe Journal of Mathematics. April 2019;1(1):18-23.
Chicago Taylan, İffet. “Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers”. Maltepe Journal of Mathematics 1, no. 1 (April 2019): 18-23.
EndNote Taylan İ (April 1, 2019) Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers. Maltepe Journal of Mathematics 1 1 18–23.
IEEE İ. Taylan, “Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers”, Maltepe Journal of Mathematics, vol. 1, no. 1, pp. 18–23, 2019.
ISNAD Taylan, İffet. “Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers”. Maltepe Journal of Mathematics 1/1 (April 2019), 18-23.
JAMA Taylan İ. Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers. Maltepe Journal of Mathematics. 2019;1:18–23.
MLA Taylan, İffet. “Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers”. Maltepe Journal of Mathematics, vol. 1, no. 1, 2019, pp. 18-23.
Vancouver Taylan İ. Abel Statistical Delta Quasi Cauchy Sequences of Real Numbers. Maltepe Journal of Mathematics. 2019;1(1):18-23.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660