Yeşil Ulaşım Sistemleri İçin Hidrojen Yakıt İkmal İstasyonları Genişletme Planlamasının Optimizasyonu
Yıl 2025,
Cilt: 66 Sayı: 720, 462 - 489, 30.09.2025
Duygu Tavşancı Akbaş
,
Emrah Bıyık
Öz
Hidrojen yakıt hücreli araçlar, çevreye verilen zararı azaltma ve yenilenebilir enerji kaynaklarının kullanımını destekleme potansiyeline sahiptir. Hidrojen yakıt hücreli araçların yaygınlaşabilmesi için gerekli hususlardan bir tanesi de uygun ve erişilebilir yakıt ikmal istasyonlarının kurulmasıdır. Bu çalışmada, yüksek nüfuslu bölgelerin hidrojen yakıt ikmali taleplerini karşılamak amacıyla hidrojen yakıt ikmal istasyonları için en uygun yer ve kapasite planlamasını gerçekleştirmek üzere bir metodoloji sunulmaktadır. Çalışma, hidrojen yakıt ikmal istasyonları ve hidrojen üretim istasyonları kurmak için en iyi çözümleri bulmayı amaçlamaktadır. Geliştirilen optimizasyon metodolojisi İzmir ili Bornova ilçesi verileri kullanılarak yapılan benzetim çalışmasında test edilmiştir. Bulgular, hidrojen yakıt altyapısının kurulması ve verimli bir şekilde uygulanması için gerekli yerleştirme kriterlerini göstermektedir.
Kaynakça
-
Bae, S., Lee, E., & Han, J. (2020). Multi-period planning of hydrogen supply network for
refuelling hydrogen fuel cell vehicles in Urban areas. Sustainability (Switzerland), 12(10).
Doi: https://doi.org/10.3390/su12104114
-
Geçici, E., Güler, M. G., & Bilgiç, T. (2022). Multi-period planning of hydrogen refuelling
stations using flow data: A case study for Istanbul. International Journal of Hydrogen
Energy, 47(95), 40138–40155. Doi: https://doi.org/10.1016/j.ijhydene.2022.08.068
-
Jian, P., Xiang, S., & Sabzalian, M. H. (2024). Planning of a charging station for electric and
hydrogen vehicles under hydrogen storage and fuel cell systems using a novel stochastic
p-robust optimization technique. International Journal of Hydrogen Energy, 88, 702–712.
Doi: https://doi.org/10.1016/j.ijhydene.2024.09.228
-
Kim, H., Eom, M., & Kim, B. I. (2020). Development of strategic hydrogen refueling station
deployment plan for Korea. International Journal of Hydrogen Energy, 45(38), 19900–
19911. Doi: https://doi.org/10.1016/j.ijhydene.2020.04.246
-
Konneh, K. V., Masrur, H., Othman, M. L., Wahab, N. I. A., Hizam, H., Islam, S. Z., … Senjyu,
T. (2021). Optimal Design and Performance Analysis of a Hybrid Off-Grid Renewable
Power System Considering Different Component Scheduling, PV Modules, and Solar
Tracking Systems. IEEE Access, 9, 64393–64413. Doi: https://doi.org/10.1109/ACCESS.
2021.3075732
-
Li, L., Manier, H., & Manier, M. A. (2020). Integrated optimization model for hydrogen
supply chain network design and hydrogen fueling station planning. Computers and
Chemical Engineering, 134. Doi: https://doi.org/10.1016/j.compchemeng.2019.106683
-
Li, S. B., & Kang, Z. T. (2022). Capacity Optimization of Clean Renewable Energy in Power
Grid Considering Low Temperature Environment Constraint. IEEE Access, 10, 2740–
2752. Doi: https://doi.org/10.1109/ACCESS.2021.3137279
-
Long, T., & Jia, Q. S. (2022). Joint Optimization for Coordinated Charging Control of
Commercial Electric Vehicles Under Distributed Hydrogen Energy Supply. IEEE Transactions
on Control Systems Technology, 30(2), 835–843. Doi: https://doi.org/10.1109/
TCST.2021.3070482
-
Nandi, S., Ghatak, S. R., Sannigrahi, S., & Acharjee, P. (2024). Coordinated planning and
operation of PV- hydrogen integrated distribution network incorporating daily-seasonal
green hydrogen storage and EV charging station. International Journal of Hydrogen Energy,
90, 134–158. Doi: https://doi.org/10.1016/j.ijhydene.2024.09.402
-
Shi, M., & Huang, Y. (2023). Dynamic planning and energy management strategy of integrated
charging and hydrogen refueling at highway energy supply stations considering
on-site green hydrogen production. International Journal of Hydrogen Energy, 48(77),
29835–29851. Doi: https://doi.org/10.1016/j.ijhydene.2023.04.201
-
Shinoda, K., Lee, E. P., Nakano, M., & Lukszo, Z. (2016). Optimization model for a microgrid
with fuel cell vehicles. In ICNSC 2016 - 13th IEEE International Conference on Networking,
Sensing and Control. Institute of Electrical and Electronics Engineers Inc. Doi:
https://doi.org/10.1109/ICNSC.2016.7479027
-
Tabandeh, A., Hossain, M. J., & Li, L. (2022). Integrated multi-stage and multi-zone distribution
network expansion planning with renewable energy sources and hydrogen refuelling
stations for fuel cell vehicles. Applied Energy, 319. Doi: https://doi.org/10.1016/j.
apenergy.2022.119242
-
Tan, H., Shao, Z., Wang, Q., Lin, Z., Li, Z., Weng, H., & Mohamed, M. A. (2025). A coordinated
planning method of hydrogen refueling stations and distribution network considering
gas-solid two-phase hydrogen storage mode. International Journal of Hydrogen Energy,
100, 1561–1573. Doi: https://doi.org/10.1016/j.ijhydene.2024.12.282
-
Wu, W. P., Wu, K. X., Zeng, W. K., & Yang, P. C. (2022). Optimization of long-distance and
large-scale transmission of renewable hydrogen in China: Pipelines vs. UHV. International
Journal of Hydrogen Energy, 47(58), 24635–24650. Doi: https://doi.org/10.1016/j.
ijhydene.2021.10.066
Optimal Planning of Hydrogen Refuelling Station Expansion for Green Transportation Systems
Yıl 2025,
Cilt: 66 Sayı: 720, 462 - 489, 30.09.2025
Duygu Tavşancı Akbaş
,
Emrah Bıyık
Öz
Hydrogen fuel cell vehicles have the potential to reduce environmental damage and support the use of renewable energy sources. One of the necessary factors for the widespread adoption of hydrogen fuel cell vehicles is the establishment of suitable and accessible refueling stations. In this study, a methodology is presented to determine the most appropriate location and capacity planning for hydrogen refueling stations in order to meet the hydrogen refueling demands of densely populated areas. The study aims to find the best solutions for establishing hydrogen refueling stations and hydrogen production stations. The developed optimization methodology was tested in a simulation study using data from the Bornova district of İzmir. The findings demonstrate the placement criteria necessary for the establishment and efficient implementation of the hydrogen fuel infrastructure.
Kaynakça
-
Bae, S., Lee, E., & Han, J. (2020). Multi-period planning of hydrogen supply network for
refuelling hydrogen fuel cell vehicles in Urban areas. Sustainability (Switzerland), 12(10).
Doi: https://doi.org/10.3390/su12104114
-
Geçici, E., Güler, M. G., & Bilgiç, T. (2022). Multi-period planning of hydrogen refuelling
stations using flow data: A case study for Istanbul. International Journal of Hydrogen
Energy, 47(95), 40138–40155. Doi: https://doi.org/10.1016/j.ijhydene.2022.08.068
-
Jian, P., Xiang, S., & Sabzalian, M. H. (2024). Planning of a charging station for electric and
hydrogen vehicles under hydrogen storage and fuel cell systems using a novel stochastic
p-robust optimization technique. International Journal of Hydrogen Energy, 88, 702–712.
Doi: https://doi.org/10.1016/j.ijhydene.2024.09.228
-
Kim, H., Eom, M., & Kim, B. I. (2020). Development of strategic hydrogen refueling station
deployment plan for Korea. International Journal of Hydrogen Energy, 45(38), 19900–
19911. Doi: https://doi.org/10.1016/j.ijhydene.2020.04.246
-
Konneh, K. V., Masrur, H., Othman, M. L., Wahab, N. I. A., Hizam, H., Islam, S. Z., … Senjyu,
T. (2021). Optimal Design and Performance Analysis of a Hybrid Off-Grid Renewable
Power System Considering Different Component Scheduling, PV Modules, and Solar
Tracking Systems. IEEE Access, 9, 64393–64413. Doi: https://doi.org/10.1109/ACCESS.
2021.3075732
-
Li, L., Manier, H., & Manier, M. A. (2020). Integrated optimization model for hydrogen
supply chain network design and hydrogen fueling station planning. Computers and
Chemical Engineering, 134. Doi: https://doi.org/10.1016/j.compchemeng.2019.106683
-
Li, S. B., & Kang, Z. T. (2022). Capacity Optimization of Clean Renewable Energy in Power
Grid Considering Low Temperature Environment Constraint. IEEE Access, 10, 2740–
2752. Doi: https://doi.org/10.1109/ACCESS.2021.3137279
-
Long, T., & Jia, Q. S. (2022). Joint Optimization for Coordinated Charging Control of
Commercial Electric Vehicles Under Distributed Hydrogen Energy Supply. IEEE Transactions
on Control Systems Technology, 30(2), 835–843. Doi: https://doi.org/10.1109/
TCST.2021.3070482
-
Nandi, S., Ghatak, S. R., Sannigrahi, S., & Acharjee, P. (2024). Coordinated planning and
operation of PV- hydrogen integrated distribution network incorporating daily-seasonal
green hydrogen storage and EV charging station. International Journal of Hydrogen Energy,
90, 134–158. Doi: https://doi.org/10.1016/j.ijhydene.2024.09.402
-
Shi, M., & Huang, Y. (2023). Dynamic planning and energy management strategy of integrated
charging and hydrogen refueling at highway energy supply stations considering
on-site green hydrogen production. International Journal of Hydrogen Energy, 48(77),
29835–29851. Doi: https://doi.org/10.1016/j.ijhydene.2023.04.201
-
Shinoda, K., Lee, E. P., Nakano, M., & Lukszo, Z. (2016). Optimization model for a microgrid
with fuel cell vehicles. In ICNSC 2016 - 13th IEEE International Conference on Networking,
Sensing and Control. Institute of Electrical and Electronics Engineers Inc. Doi:
https://doi.org/10.1109/ICNSC.2016.7479027
-
Tabandeh, A., Hossain, M. J., & Li, L. (2022). Integrated multi-stage and multi-zone distribution
network expansion planning with renewable energy sources and hydrogen refuelling
stations for fuel cell vehicles. Applied Energy, 319. Doi: https://doi.org/10.1016/j.
apenergy.2022.119242
-
Tan, H., Shao, Z., Wang, Q., Lin, Z., Li, Z., Weng, H., & Mohamed, M. A. (2025). A coordinated
planning method of hydrogen refueling stations and distribution network considering
gas-solid two-phase hydrogen storage mode. International Journal of Hydrogen Energy,
100, 1561–1573. Doi: https://doi.org/10.1016/j.ijhydene.2024.12.282
-
Wu, W. P., Wu, K. X., Zeng, W. K., & Yang, P. C. (2022). Optimization of long-distance and
large-scale transmission of renewable hydrogen in China: Pipelines vs. UHV. International
Journal of Hydrogen Energy, 47(58), 24635–24650. Doi: https://doi.org/10.1016/j.
ijhydene.2021.10.066