Research Article
BibTex RIS Cite
Year 2023, , 34 - 39, 31.12.2023
https://doi.org/10.5152/NanoEra.2023.23014

Abstract

References

  • 1. Albetran H, Dong Y, Low IM. Characterization, and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method. Journal of Asian Ceramic Societies. 2015;3(3):292-300.
  • 2. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase trans￾formation. J Mater Sci. 2011;46(4):855-874.
  • 3. Medana C, Calza P, Dal Bello F, Raso E, Minero C, Baiocchi C. Multiple unknown degradants generated from the insect repellent deet by photoinduced processes on TiO2. J Mass Spectrom. 2011;46(1):24-40.
  • 4. Sirtori C, ZapataA, Malato S, GernjakW, Fernández-AlbaAR, AgüeraA. Solar photocatalytic treatment of quinolones: intermediates and toxicity evaluation. Photochem Photobiol Sci. 2009;8(5):644-651.
  • 5. Lopez-Alvarez B, Torres-Palma RA, Peñuela G. Solar photocatalytical treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by products. J Hazard Mater. 2011;191(1-3):196-203.
  • 6. Lu CS, Chen CC, Mai FD, Li HK. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis. J Hazard Mater. 2009;165(1-3):306-316.
  • 7. Stapleton DR, Konstantinou IK, Mantzavinos D, Hela D, Papadaki M. On the kinetics and mechanisms of photolytic/TiO2-photocatalytic degradation of substituted pyridines in aqueous solutions. Appl Cat B. 2010;95(1-2):100-109.
  • 8. An TC, An JB, Yang H, Li G, Feng H, Nie X. Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 disper￾sion. J Hazard Mater. 2011;197:229-236.
  • 9. Lin Y, Ferronato C, Deng N, Wu F, Chovelon J. Photocatalytic degra￾dation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Cat B. 2009;88(1-2):32-41.
  • 10. Lazar M, Varghese S, Nair S. Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts. 2012;2(4):572-601.
  • 11. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ. Electrospun mesoporous titanium dioxide fibers. Micropor Mesopor Mater. 2004;69(1-2):77-83.
  • 12. Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using elec-trospinning process-A review. J Mater Process Technol. 2005;167(2-3):283-293.
  • 13. Bera B. Literature review on electrospinning process (A fascinating fiber fabrication technique). Imperial J Interdiscip Res. 2016;8(2):972.
  • 14. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. Controlling the fiber diameter during electrospinning. Phys Rev Lett. 2003;90(14):144502.
  • 15. Li Q, Satur DJG, Kim H, Kim HG. Preparation of sol-gel modified elec￾trospun TiO2 nanofibers fro improved photocatalytic decomposition of ethylene. Mater Lett. 2012;76:169-172.
  • 16. Guarino V, Cruz M, Iriczalili A, et al. Electrospun polycaprolactone nafobiers decorated by drug loaded chitosan nanoparticles reservoirs for antibacterial treatments. Nanotechnology. 2017;28.
  • 17. Ramakrishna S, Fujihara K, Teo W, Yong T, Ma Z, Ramaseshan R. Elec￾trospun nanofibers: solving global issues. Mater Today. 2006;9(3):40-50.
  • 18. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. Nanostruc￾tured ceramics by electrospinning. J Appl Phys. 2007;102(11):111101.
  • 19. Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: fab￾rication, assembly, and applications. J Adv Ceram. 2012;1(1):2-23.
  • 20. Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP. Photocata￾lytic activity of titania fibers obtained by elctrospinning. Mater Res Bull. 2009;44(2):312-317.
  • 21. Chuang Y, Hong G, Chang C. Study on particulate and volatile organic compounds removal with TiO2 non-woven filler prepared by electro￾spinning. J Air Waste Manag Assoc. 2014;64(6):738-742.
  • 22. Jeun JP, Park DW, Seo DK, et al. Enhancement of photocatalytic activity of PAN-Based nanofibers containing sol-gel derived TiO2 nanoparticles by e-beam irradiation. Rev Adv Mater Sci. 2011;28:26.
  • 23. Mishra S, Ahrenkiel P, Shankar R, Whites KW. Synthesis and charac￾terization of electrospun TiO2/Ag composite nanofibers for photo￾catalysis applications. Microsc Microanal. 2011;17(S2)(suppl 2):1710-1711.
  • 24. Cik Rohaida CH, Syafeika R, Siti SZA, Nur Ubaidah S, Siti AAF. Effect of electron irradiation to the photocatalytic activity of the titanium oxide fibers. IOP Conf S Mater Sci Eng. 2020;1106012016.
  • 25. Khan MQ, Kharaghani D, Ullah S, et al. Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites. Nano￾materials (Basel). 2018;8(9):644.
  • 26. Costa RGF, Ribeiro C, Mattoso LHC. Morphological and photocatalytic properties of PVA/TiO 2 nanocomposite fibers produced by electrospinning. J Nanosci Nanotechnol. 2010;10(8):5144-5152.
  • 27. Ojha S. Structure-property relationship of electrospun fibers. In Elec￾trospun Nanofibers Afshari M., ed. 2017:239.
  • 28. Sakarkar S, Muthukumaran S, Jegatheesan V. Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes. Chemosphere. 2020;257:127144.
  • 29. Al-Hazeem NZ. Nanofibers and electrospinning method. In: Kyzas G. K., Mitropoulos A. C., eds. Novel Nanomaterials - Synthesis and Applications. 1st ed. London: IntechOpen; 2018:116.

Polyvinyl Alcohol/Titanium dioxide Fibers Prepared Via Electrospinning Methods for Potential Application of Water Treatment

Year 2023, , 34 - 39, 31.12.2023
https://doi.org/10.5152/NanoEra.2023.23014

Abstract

Titanium dioxide (TiO2) is an ideal photocatalyst because of its stability in terms of chemical and optical properties. The performance of TiO2 as fiber incorporated in a membrane may be better than in bulk form, especially in applications of water treatment. There are many methods for fabrication of TiO2 in a composite membrane, such as freeze-drying, thermal evaporation, and physical and chemical vapor deposition. Unfortunately, these methods are not favorable because they require multiple steps, which may produce impurities. Electrospinning is a simple and versatile technique to produce a composite membrane comprised of TiO2. In this study, we propose the fabrication of PVA/TiO2 composite membrane using the electrospinning method for its potential in water treatment. We studied 2 parameters, which are polymer loading and sonication time, to investigate the quality of the electrospun fibers. Morphology and x-ray diffraction analysis showed that the TiO2 particles were well incorporated into the PVA fibers. The ability of these electrospun composite fibers to degrade methylene blue dye under UV exposure confirmed that the PVA/TiO2 fibers can be used in water treatment applications.

References

  • 1. Albetran H, Dong Y, Low IM. Characterization, and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method. Journal of Asian Ceramic Societies. 2015;3(3):292-300.
  • 2. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase trans￾formation. J Mater Sci. 2011;46(4):855-874.
  • 3. Medana C, Calza P, Dal Bello F, Raso E, Minero C, Baiocchi C. Multiple unknown degradants generated from the insect repellent deet by photoinduced processes on TiO2. J Mass Spectrom. 2011;46(1):24-40.
  • 4. Sirtori C, ZapataA, Malato S, GernjakW, Fernández-AlbaAR, AgüeraA. Solar photocatalytic treatment of quinolones: intermediates and toxicity evaluation. Photochem Photobiol Sci. 2009;8(5):644-651.
  • 5. Lopez-Alvarez B, Torres-Palma RA, Peñuela G. Solar photocatalytical treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by products. J Hazard Mater. 2011;191(1-3):196-203.
  • 6. Lu CS, Chen CC, Mai FD, Li HK. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis. J Hazard Mater. 2009;165(1-3):306-316.
  • 7. Stapleton DR, Konstantinou IK, Mantzavinos D, Hela D, Papadaki M. On the kinetics and mechanisms of photolytic/TiO2-photocatalytic degradation of substituted pyridines in aqueous solutions. Appl Cat B. 2010;95(1-2):100-109.
  • 8. An TC, An JB, Yang H, Li G, Feng H, Nie X. Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 disper￾sion. J Hazard Mater. 2011;197:229-236.
  • 9. Lin Y, Ferronato C, Deng N, Wu F, Chovelon J. Photocatalytic degra￾dation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Cat B. 2009;88(1-2):32-41.
  • 10. Lazar M, Varghese S, Nair S. Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts. 2012;2(4):572-601.
  • 11. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ. Electrospun mesoporous titanium dioxide fibers. Micropor Mesopor Mater. 2004;69(1-2):77-83.
  • 12. Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using elec-trospinning process-A review. J Mater Process Technol. 2005;167(2-3):283-293.
  • 13. Bera B. Literature review on electrospinning process (A fascinating fiber fabrication technique). Imperial J Interdiscip Res. 2016;8(2):972.
  • 14. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. Controlling the fiber diameter during electrospinning. Phys Rev Lett. 2003;90(14):144502.
  • 15. Li Q, Satur DJG, Kim H, Kim HG. Preparation of sol-gel modified elec￾trospun TiO2 nanofibers fro improved photocatalytic decomposition of ethylene. Mater Lett. 2012;76:169-172.
  • 16. Guarino V, Cruz M, Iriczalili A, et al. Electrospun polycaprolactone nafobiers decorated by drug loaded chitosan nanoparticles reservoirs for antibacterial treatments. Nanotechnology. 2017;28.
  • 17. Ramakrishna S, Fujihara K, Teo W, Yong T, Ma Z, Ramaseshan R. Elec￾trospun nanofibers: solving global issues. Mater Today. 2006;9(3):40-50.
  • 18. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. Nanostruc￾tured ceramics by electrospinning. J Appl Phys. 2007;102(11):111101.
  • 19. Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: fab￾rication, assembly, and applications. J Adv Ceram. 2012;1(1):2-23.
  • 20. Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP. Photocata￾lytic activity of titania fibers obtained by elctrospinning. Mater Res Bull. 2009;44(2):312-317.
  • 21. Chuang Y, Hong G, Chang C. Study on particulate and volatile organic compounds removal with TiO2 non-woven filler prepared by electro￾spinning. J Air Waste Manag Assoc. 2014;64(6):738-742.
  • 22. Jeun JP, Park DW, Seo DK, et al. Enhancement of photocatalytic activity of PAN-Based nanofibers containing sol-gel derived TiO2 nanoparticles by e-beam irradiation. Rev Adv Mater Sci. 2011;28:26.
  • 23. Mishra S, Ahrenkiel P, Shankar R, Whites KW. Synthesis and charac￾terization of electrospun TiO2/Ag composite nanofibers for photo￾catalysis applications. Microsc Microanal. 2011;17(S2)(suppl 2):1710-1711.
  • 24. Cik Rohaida CH, Syafeika R, Siti SZA, Nur Ubaidah S, Siti AAF. Effect of electron irradiation to the photocatalytic activity of the titanium oxide fibers. IOP Conf S Mater Sci Eng. 2020;1106012016.
  • 25. Khan MQ, Kharaghani D, Ullah S, et al. Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites. Nano￾materials (Basel). 2018;8(9):644.
  • 26. Costa RGF, Ribeiro C, Mattoso LHC. Morphological and photocatalytic properties of PVA/TiO 2 nanocomposite fibers produced by electrospinning. J Nanosci Nanotechnol. 2010;10(8):5144-5152.
  • 27. Ojha S. Structure-property relationship of electrospun fibers. In Elec￾trospun Nanofibers Afshari M., ed. 2017:239.
  • 28. Sakarkar S, Muthukumaran S, Jegatheesan V. Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes. Chemosphere. 2020;257:127144.
  • 29. Al-Hazeem NZ. Nanofibers and electrospinning method. In: Kyzas G. K., Mitropoulos A. C., eds. Novel Nanomaterials - Synthesis and Applications. 1st ed. London: IntechOpen; 2018:116.
There are 29 citations in total.

Details

Primary Language English
Subjects Micro and Nanosystems, Nanomaterials
Journal Section Research Articles
Authors

Cik Rohaida Che Hak This is me

Publication Date December 31, 2023
Submission Date November 29, 2023
Acceptance Date December 29, 2023
Published in Issue Year 2023

Cite