Review
BibTex RIS Cite

A review on ophthalmic delivery systems containing flavonoids for the treatment of eye diseases

Year 2021, Volume: Volume 1 Issue: Issue 1, 1 - 13, 16.10.2021

Abstract

Flavonoids, polyphenolic compounds, have many biological effects, including antioxidant, free-radical scavenging properties, antiviral, antibacterial, anti-inflammation, anti-allergic, and anti-carcinogenic effects, anti-platelet, anti-thrombotic, and vasodilating actions. A decreased antioxidant capacity, oxidative stress, and inflammatory mechanisms in the ocular tissues are considered to have a significant role in the development and progression of ocular diseases. Flavonoids have very beneficial effects on eye health, and also on the treatment of eye diseases due to their antioxidant, anti-inflammatory, and ocular blood flow enhancing properties. Most flavonoids have low bioavailability associated with low water solubility. It is important to develop effective ocular drug delivery systems containing flavonoids for application directly to the eye. This delivery system can increase ocular bioavailability and enable flavonoids to reach the internal structures of the eye more effectively. Furthermore, considering the sensitive nature of flavonoids as antioxidant agents, especially nano-sized formulations have in particular become potential carriers for preserving them and improving their bioavailability and therapeutic efficacy. This review will focus the published studies that have investigated the development of delivery systems containing flavonoids for the treatment of eye diseases. In addition, within the scope of this review, flavonoids, common eye diseases, and the materials used in the preparation of the ophthalmic delivery systems containing flavonoids are briefly mentioned.

References

  • 1. Maher, P.; Hanneken, A. Flavonoids Protect Retinal Ganglion Cells from Oxidative Stress–Induced Death. Investigative Opthalmology & Visual Science 2005, 46, 4796, doi:10.1167/iovs.05-0397.
  • 2. Murti, Y. Flavonoid: A Pharmacologically Significant Scaffold. World Journal of Pharmacy and Pharmaceutical Sciences 2017, 488–504, doi:10.20959/wjpps20175-9143. 3. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. Journal of Nutritional Science 2016, 5, e47, doi:10.1017/jns.2016.41.
  • 4. Cavazos-Garduño, A.; Serrano-Niño, J.C.; García-Varela, R.; García, H.S. Anticarcinogenic Phytochemicals. Fruit and Vegetable Phytochemicals 2017, 53–66.
  • 5. Gundogdu, G.; Dodurga, Y.; Cetin, M.; Secme, M.; Cicek, B. The cytotoxic and genotoxic effects of daidzein on MIA PaCa-2 human pancreatic carcinoma cells and HT-29 human colon cancer cells. Drug and Chemical Toxicology 2020, 43, 581–587, doi:10.1080/01480545.2018.1527849.
  • 6. Adelli, G.R.; Srirangam, R.; Majumdar, S. Phytochemicals in ocular health: Therapeutic potential and delivery challenges. World Journal of Pharmacology 2013, 2, 18, doi:10.5497/wjp.v2.i1.18.
  • 7. Tian, C.; Zhang, P.; Yang, C.; Gao, X.; Wang, H.; Guo, Y.; Liu, M. Extraction Process, Component Analysis, and In Vitro Antioxidant, Antibacterial, and Anti-Inflammatory Activities of Total Flavonoid Extracts from Abutilon theophrasti Medic. Leaves. Mediators of Inflammation 2018, 2018, 1–17, doi:10.1155/2018/3508506.
  • 8. Paduch, R.; Woźniak, A.; Niedziela, P.; Rejdak, R. Assessment of Eyebright (Euphrasia Officinalis L.) Extract Activity in Relation to Human Corneal Cells Using In Vitro Tests. Balkan Medical Journal2014, 33, 29–36, doi:10.5152/balkanmedj.2014.8377.
  • 9. Hanneken, A.; Lin, F.-F.; Johnson, J.; Maher, P. Flavonoids Protect Human Retinal Pigment Epithelial Cells from Oxidative-Stress– Induced Death. Investigative Opthalmology & Visual Science 2006, 47, 3164, doi:10.1167/iovs.04-1369.
  • 10. Andres, S.; Abraham, K.; Appel, K.E.; Lampen, A. Risks and benefits of dietary isoflavones for cancer. Critical Reviews in Toxicology 2011, 41, 463–506, doi:10.3109/10408444.2010.541900.
  • 11. Xiao, F.; Cui, H.; Zhong, X. Beneficial effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Saudi Journal of Biological Sciences 2018, 25, 832–837, doi:10.1016/j.sjbs.2016.11.016.
  • 12. Gopinath, B.; Liew, G.; Kifley, A.; Flood, V.M.; Joachim, N.; Lewis, J.R.; Hodgson, J.M.; Mitchell, P. Dietary flavonoids and the prevalence and 15-y incidence of age-related macular degeneration. The American Journal of Clinical Nutrition 2018, 108, 381–387, doi:10.1093/ajcn/nqy114.
  • 13. Dinte, E.; Vostinaru, O.; Samoila, O.; Sevastre, B.; Bodoki, E. Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. Coatings 2020, 10, 36, doi:10.3390/coatings10010036.
  • 14. Liu, Z.; Zhang, X.; Wu, H.; Li, J.; Shu, L.; Liu, R.; Li, L.; Li, N. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Development and Industrial Pharmacy 2011, 37, 475–481, doi:10.3109/03639045.2010.522193.
  • 15. Pawlowska, E.; Szczepanska, J.; Koskela, A.; Kaarniranta, K.; Blasiak, J. Dietary Polyphenols in Age-Related Macular Degeneration: Protection against Oxidative Stress and Beyond. Oxidative Medicine and Cellular Longevity 2019, 2019, 1–13, doi:10.1155/2019/9682318.
  • 16. Davinelli, S.; Ali, S.; Scapagnini, G.; Costagliola, C. Effects of Flavonoid Supplementation on Common Eye Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Frontiers in Nutrition 2021, 8, doi:10.3389/fnut.2021.651441. 17. Kharrazi, H.; Vaisi-Raygani, A.; Rahimi, Z.; Tavilani, H.; Aminian, M.; Pourmotabbed, T. Association between enzymatic and non-enzymatic antioxidant defense mechanism with apolipoprotein E genotypes in Alzheimer disease. Clinical Biochemistry 2008, 41, 932–936, doi:10.1016/j.clinbiochem.2008.05.001.
  • 18. Kruk, J.; Kubasik-Kladna, K.; Aboul-Enein, H.Y. The Role Oxidative Stress in the Pathogenesis of Eye Diseases: Current Status and a Dual Role of Physical Activity. Mini-Reviews in Medicinal Chemistry 2015, 16, 241–257, doi:10.2174/1389557516666151120114605.
  • 19. Saccà, S.; Cutolo, C.; Ferrari, D.; Corazza, P.; Traverso, C. The Eye, Oxidative Damage and Polyunsaturated Fatty Acids. Nutrients 2018, 10, 668, doi:10.3390/nu10060668.
  • 20. Masuda, T.; Shimazawa, M.; Hara, H. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone). Oxidative Medicine and Cellular Longevity 2017, 2017, 1–14, doi:10.1155/2017/9208489.
  • 21. Cejka, C.; Cejkova, J. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries. Oxidative Medicine and Cellular Longevity 2015, 2015, 1–10, doi:10.1155/2015/591530.
  • 22. da Silva, S.B.; Borges, S.; Ramos, Ó.; Pintado, M.; Ferreira, D.; Sarmento, B. Treating Retinopathies – Nanotechnology as a Tool in Protecting Antioxidants Agents. Systems Biology of Free Radicals and Antioxidants 2014, 3539–3558.
  • 23. Bellezza, I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Frontiers in Pharmacology 2018, 9, doi:10.3389/fphar.2018.01280.
  • 24. George, A.K.; Singh, M.; Homme, R.P.; Majumder, A.; Sandhu, H.S.; Tyagi, S.C. A hypothesis for treating inflammation and oxidative stress with hydrogen sulfide during age-related macular degeneration. International Journal of Ophthalmology 2018, doi:10.18240/ijo.2018.05.26.
  • 25. Perrone, S.; Tataranno, M.L.; Stazzoni, G.; Buonocore, G. Oxidative stress and free radicals related diseases of the newborn. Advances in Bioscience and Biotechnology 2012, 03, 1043–1050, doi:10.4236/abb.2012.327127.
  • 26. Quinn, G.E.; Ying, G.; Bell, E.F.; Donohue, P.K.; Morrison, D.; Tomlinson, L.A.; Binenbaum, G. Incidence and Early Course of Retinopathy of Prematurity. JAMA Ophthalmology 2018, 136, 1383, doi:10.1001/jamaophthalmol.2018.4290.
  • 27. Zhang, H.B.; Wang, X.D.; Xu, K.; Li, X.G. The progress of prophylactic treatment in retinopathy of prematurity. International Journal of Ophthalmology 2018, 11, 858–873, doi:10.18240/ijo.2018.05.24.
  • 28. Kim, S.J.; Port, A.D.; Swan, R.; Campbell, J.P.; Chan, R.V.P.; Chiang, M.F. Retinopathy of prematurity: a review of risk factors and their clinical significance. Survey of Ophthalmology 2018, 63, 618–637, doi:10.1016/j.survophthal.2018.04.002.
  • 29. Tsang, J.K.W.; Liu, J.; Lo, A.C.Y. Vascular and Neuronal Protection in the Developing Retina: Potential Therapeutic Targets for Retinopathy of Prematurity. International Journal of Molecular Sciences 2019, 20, 4321, doi:10.3390/ijms20174321.
  • 30. Weinberger, B.; Laskin, D.L.; Heck, D.E.; Laskin, J.D. Oxygen Toxicity in Premature Infants. Toxicology and Applied Pharmacology 2002, 181, 60–67, doi:10.1006/taap.2002.9387.
  • 31. Heruye, S.H.; Nkenyi, L.N.M.; Singh, N.U.; Yalzadeh, D.; Ngele, K.K.; Njie-Mbye, Y.-F.; Ohia, S.E.; Opere, C.A. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals 2020, 13, 15, doi:10.3390/ph13010015.
  • 32. Kaur, J.; Kukreja, S.; Kaur, A.; Malhotra, N.; Kaur, R. The Oxidative Stress in Cataract Patients. Journal of Clinical and Diagnostic Research 2012, 6, 1629–1632, doi:10.7860/JCDR/2012/4856.2626.
  • 33. Zhang, J.; Yan, H.; Lou, M.F. Does oxidative stress play any role in diabetic cataract formation? Re-evaluation using a thioltransferase gene knockout mouse model. Experimental Eye Research 2017, 161, 36–42, doi:10.1016/j.exer.2017.05.014.
  • 34. Bai, J.; Yang, F.; Dong, L.; Zheng, Y. Ghrelin Protects Human Lens Epithelial Cells against Oxidative Stress-Induced Damage. Oxidative Medicine and Cellular Longevity 2017, 2017, 1–8, doi:10.1155/2017/1910450.
  • 35. Garcia-Medina, J.J.; Monica del-Rio-Vellosillo; Garcia-Medina, M.; Zanon-Moreno, V.; Gallego-Pinazo, R.; Pinazo-Duran, M.D. Diabetic Retinopathy and Oxidative Stress. In Diabetes: Oxidative Stress and Dietary Antioxidants; Preedy, V.R., Ed.; Academic Press, 2014; pp. 33–40.
  • 36. Cecilia, O.-M.; Alberto, C.-G.J.; José, N.-P.; Germán, C.-M.E.; Karen, L.-C.A.; Miguel, R.-P.L.; Raúl, R.-R.R.; Daniel, R.-C.A. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. Journal of Diabetes Research 2019, 2019, 1–21, doi:10.1155/2019/8562408.
  • 37. Duraisamy, A.J.; Mishra, M.; Kowluru, A.; Kowluru, R.A. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy. Investigative Opthalmology & Visual Science 2018, 59, 4831, doi:10.1167/iovs.18-24548.
  • 38. Bone, K.; Mills, S. (Eds. . Principles of herbal pharmacology. In Principles and Practice of Phytotherapy; Bone, K., Mills, S., Eds.; Churchill Livingstone, 2013; pp. 17–82.
  • 39. Thilakarathna, S.; Rupasinghe, H. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients 2013, 5, 3367–3387, doi:10.3390/nu5093367.
  • 40. Williamson, G.; Kay, C.D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety 2018, 17, 1054–1112, doi:10.1111/1541-4337.12351.
  • 41. Xiao, J. Dietary Flavonoid Aglycones and Their Glycosides: Which Show Better Biological Significance? Critical Reviews in Food Science and Nutrition 2017, 57, 1874–1905, doi:10.1080/10408398.2015.1032400.
  • 42. McKay, T.B.; Karamichos, D. Quercetin and the ocular surface: What we know and where we are going. Experimental Biology and Medicine 2017, 242, 565–572, doi:10.1177/1535370216685187.
  • 43. Chuang, Y.-L.; Fang, H.-W.; Ajitsaria, A.; Chen, K.-H.; Su, C.-Y.; Liu, G.-S.; Tseng, C.-L. Development of Kaempferol-Loaded Gelatin Nanoparticles for the Treatment of Corneal Neovascularization in Mice. Pharmaceutics 2019, 11, 635, doi:10.3390/pharmaceutics11120635.
  • 44. Milbury, P.E. Flavonoid Intake and Eye Health. Journal of Nutrition in Gerontology and Geriatrics 2012, 31, 254–268, doi:10.1080/21551197.2012.698221.
  • 45. Truong, C. Development and evaluation of Quercetin nanoparticles and hot melt cast films for neuroprotection, University of Mississippi, 2017.
  • 46. Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews 2013, 65, 104–120, doi:10.1016/j.addr.2012.10.003.
  • 47. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology 2018, 16, 71, doi:10.1186/s12951-018-0392-8.
  • 48. Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Frontiers in Sustainable Food Systems 2019, 3, doi:10.3389/fsufs.2019.00095.
  • 49. Wang, H.; Li, X.; Yang, H.; Wang, J.; Li, Q.; Qu, R.; Wu, X. Nanocomplexes based polyvinylpyrrolidone K-17PF for ocular drug delivery of naringenin. International Journal of Pharmaceutics 2020, 578, 119133, doi:10.1016/j.ijpharm.2020.119133.
  • 50. Bhia, M.; Motallebi, M.; Abadi, B.; Zarepour, A.; Pereira-Silva, M.; Saremnejad, F.; Santos, A.C.; Zarrabi, A.; Melero, A.; Jafari, S.M.; et al. Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021, 13, 291, doi:10.3390/pharmaceutics13020291.
  • 51. Tutunchi, H.; Naeini, F.; Ostadrahimi, A.; Hosseinzadeh‐Attar, M.J. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID‐19. Phytotherapy Research 2020, 34, 3137–3147, doi:10.1002/ptr.6781.
  • 52. Di, L.; Kerns, E.H. Formulation. In Drug-Like Properties; Academic Press, 2016; pp. 497–510.
  • 53. Jacob, S.; Nair, A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Development Research 2018, 79, 201–217, doi:10.1002/ddr.21452.
  • 54. Zhang, L.; Zhang, J.; Wang, L.; Xia, H. Ocular Pharmacokinetics and Availability of Topically Applied Baicalein in Rabbits. Current Eye Research 2009, 34, 257–263, doi:10.1080/02713680902725962.
  • 55. Majumdar, S.; Srirangam, R. Solubility, Stability, Physicochemical Characteristics and In Vitro Ocular Tissue Permeability of Hesperidin: A Natural Bioflavonoid. Pharmaceutical Research 2009, 26, 1217–1225, doi:10.1007/s11095-008-9729-6.
  • 56. Lynch, C.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery. Polymers 2019, 11, 1371, doi:10.3390/polym11081371.
  • 57. Lee, H.; Shim, W.; Kim, C.E.; Choi, S.Y.; Lee, H.; Yang, J. Therapeutic Efficacy of Nanocomplex of Poly(Ethylene Glycol) and Catechin for Dry Eye Disease in a Mouse Model. Investigative Opthalmology & Visual Science 2017, 58, 1682, doi:10.1167/iovs.16-20843.
  • 58. Bealer, E.J.; Onissema-Karimu, S.; Rivera-Galletti, A.; Francis, M.; Wilkowski, J.; la Cruz, D.S.; Hu, X. Protein–Polysaccharide Composite Materials: Fabrication and Applications. Polymers 2020, 12, 464, doi:10.3390/polym12020464.
  • 59. Saeed, R.M.; Dmour, I.; Taha, M.O. Stable Chitosan-Based Nanoparticles Using Polyphosphoric Acid or Hexametaphosphate for Tandem Ionotropic/Covalent Crosslinking and Subsequent Investigation as Novel Vehicles for Drug Delivery. Frontiers in Bioengineering and Biotechnology 2020, 8, doi:10.3389/fbioe.2020.00004.
  • 60. Zhang, P.; Liu, X.; Hu, W.; Bai, Y.; Zhang, L. Preparation and evaluation of naringenin-loaded sulfobutylether-βcyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydrate Polymers 2016, 149, 224–230, doi:10.1016/j.carbpol.2016.04.115.
  • 61. Faramarzi, N.; Mohammadnejad, J.; Jafary, H.; Narmani, A.; Koosha, M.; Motlagh, B. Synthesis and in vitro Evaluation of TamoxifenLoaded Gelatin as Effective Nanocomplex in Drug Delivery Systems. International Journal of Nanoscience 2020, 19, 2050002, doi:10.1142/S0219581X20500027.
  • 62. Huang, H.-Y.; Wang, M.-C.; Chen, Z.-Y.; Chiu, W.-Y.; Chen, K.-H.; Lin, I.-C.; Yang, W.-C.V.; Wu, C.-C.; Tseng, C.-L. Gelatinepigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. International Journal of Nanomedicine 2018, Volume 13, 7251–7273, doi:10.2147/IJN.S173198.
  • 63. Tseng, C.-L.; Chen, K.-H.; Su, W.-Y.; Lee, Y.-H.; Wu, C.-C.; Lin, F.-H. Cationic Gelatin Nanoparticles for Drug Delivery to the Ocular Surface: In Vitro and In Vivo Evaluation. Journal of Nanomaterials2013, 2013, 1–11, doi:10.1155/2013/238351.
  • 64. Kelemen, K.; Kiesecker, C.; Zitron, E.; Bauer, A.; Scholz, E.; Bloehs, R.; Thomas, D.; Greten, J.; Remppis, A.; Schoels, W.; et al. Green tea flavonoid epigallocatechin-3-gallate (EGCG) inhibits cardiac hERG potassium channels. Biochemical and Biophysical Research Communications 2007, 364, 429–435, doi:10.1016/j.bbrc.2007.10.001.
  • 65. Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.-B. Polymeric micelles as drug delivery vehicles. RSC Advances 2014, 4, 17028–17038, doi:10.1039/C3RA47370H.
  • 66. Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Favero, E. Del; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release 2021, 332, 312–336, doi:10.1016/j.jconrel.2021.02.031.
  • 67. Sun, F.; Zheng, Z.; Lan, J.; Li, X.; Li, M.; Song, K.; Wu, X. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Delivery2019, 26, 575–585, doi:10.1080/10717544.2019.1622608.
  • 68. Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems – an overview. Acta Pharmaceutica Sinica B 2013, 3, 361–372, doi:10.1016/j.apsb.2013.10.001.
  • 69. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Research Letters 2013, 8, 102, doi:10.1186/1556-276X-8-102.
  • 70. Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: potential and limiting factors. Scientific Reports 2016, 6, 25876, doi:10.1038/srep25876.
  • 71. Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology 2016, 44, 381–391, doi:10.3109/21691401.2014.953633.
  • 72. Mishra, G.P.; Bagui, M.; Tamboli, V.; Mitra, A.K. Recent Applications of Liposomes in Ophthalmic Drug Delivery. Journal of Drug Delivery 2011, 2011, 1–14, doi:10.1155/2011/863734.
  • 73. Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Frontiers in Molecular Biosciences 2020, 7, 587997, doi:10.3389/fmolb.2020.587997.
  • 74. Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences 2009, 71, 349, doi:10.4103/0250-474X.57282.
  • 75. Seyfoddin, A.; Shaw, J.; Al-Kassas, R. Solid lipid nanoparticles for ocular drug delivery. Drug Delivery 2010, 17, 467–489, doi:10.3109/10717544.2010.483257.
  • 76. Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Advanced Pharmaceutical Bulletin 2020, 10, 150–165, doi:10.34172/apb.2020.021.
  • 77. Kaplan, A.B.U.; Cetin, M.; Orgul, D.; Taghizadehghalehjoughi, A.; Hacımuftuoglu, A.; Hekimoglu, S. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. Journal of Drug Delivery Science and Technology 2019, 52, 189–203, doi:10.1016/j.jddst.2019.04.027.
  • 78. Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Nanoemulsion as a Potential Ophthalmic Delivery System for Dorzolamide Hydrochloride. AAPS PharmSciTech 2009, 10, 808, doi:10.1208/s12249-009-9268-4.
  • 79. Liu, C.-H.; Huang, Y.-C.; Jhang, J.-W.; Liu, Y.-H.; Wu, W.-C. Quercetin delivery to porcine cornea and sclera by solid lipid nanoparticles and nanoemulsion. RSC Advances 2015, 5, 100923–100933, doi:10.1039/C5RA17423F.
  • 80. Wang, J.; Zhao, F.; Liu, R.; Chen, J.; Zhang, Q.; Lao, R.; Wang, Z.; Jin, X.; Liu, C. Novel cationic lipid nanoparticles as an ophthalmic delivery system for multicomponent drugs: development, characterization, in vitro permeation, in vivo pharmacokinetic, and molecular dynamics studies. International Journal of Nanomedicine 2017, 12, 8115–8127, doi:10.2147/IJN.S139436.
  • 81. Zhou, Y.-X.; Zhang, H.; Peng, C. Puerarin: A Review of Pharmacological Effects. Phytotherapy Research 2014, 28, 961–975, doi:10.1002/ptr.5083.
  • 82. Wang, L.; Ma, Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacology & Therapeutics 2018, 190, 105–127, doi:10.1016/j.pharmthera.2018.05.006.
  • 83. Fangueiro, J.F.; Calpena, A.C.; Clares, B.; Andreani, T.; Egea, M.A.; Veiga, F.J.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo , in vitro and ex vivo studies. International Journal of Pharmaceutics 2016, 502, 161–169, doi:10.1016/j.ijpharm.2016.02.039.
  • 84. Huang, C.; Li, C.; Muhemaitia, P. Impediment of selenite-induced cataract in rats by combinatorial drug laden liposomal preparation. Libyan Journal of Medicine 2019, 14, 1548252, doi:10.1080/19932820.2018.1548252.
  • 85. Salehi, B.; Cruz-Martins, N.; Butnariu, M.; Sarac, I.; Bagiu, I.-C.; Ezzat, S.M.; Wang, J.; Koay, A.; Sheridan, H.; Adetunji, C.O.; et al. Hesperetin’s health potential: moving from preclinical to clinical evidence and bioavailability issues, to upcoming strategies to overcome current limitations. Critical Reviews in Food Science and Nutrition 2021, 1–16, doi:10.1080/10408398.2021.1875979.
  • 86. Ashraf, O.; Nasr, M.; Nebsen, M.; Said, A.M.A.; Sammour, O. In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. International Journal of Pharmaceutics 2018, 539, 83–94, doi:10.1016/j.ijpharm.2018.01.041.
  • 87. Vines, J.B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Frontiers in Chemistry 2019, 7, doi:10.3389/fchem.2019.00167.
  • 88. Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880, doi:10.1039/C1NR11188D.
  • 89. Li, Y.-J.; Luo, L.-J.; Harroun, S.G.; Wei, S.-C.; Unnikrishnan, B.; Chang, H.-T.; Huang, Y.-F.; Lai, J.-Y.; Huang, C.-C. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019, 11, 5580–5594, doi:10.1039/C9NR00376B.
There are 87 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Meltem Cetin This is me

Publication Date October 16, 2021
Submission Date August 24, 2021
Published in Issue Year 2021 Volume: Volume 1 Issue: Issue 1

Cite