Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Polymer-Coated Magnetic Nanoparticles to the Surface of Activated Carbon and Kinetic Studies

Yıl 2021, Cilt: Volume 1 Sayı: Issue 2, 45 - 53, 30.12.2021

Öz

In the presented study, itwas investigated the synthesis of activated carbon (AC), magnetic activated carbon (MagAC), styrene-butadiene styrene magnetic activated carbon (SBS/MagAC) and poly charbonatmagnetic activated carbon (PC/MagAC) samples. Thermogravimetric Analyzer (TGA), Differential Scanning Calorimeter (DSC), Scanning Electron Microscope (SEM), X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrophotometer (FTIR analysis), Brunauer-Emmett-Teller(BET) analysis were used for characterizationstudies.Adsorbent type, temperature, solid-liquid ratio, initial concentrations and solution pH were selected as parameters in experiments. The experimental study was carried out at low pH yields were higher and performance was 98-99% in AC and Mag/AC samples. It was found that the polymer coated magnetic materials did not perform very well at high pH. It was also seen that MagAC and SBS/MagAC are more effective than AC and PC/MagAC to remove phenol.

Kaynakça

  • 1. Adar, E.; Atay, İ.N.; Büncü, K.; Bilgili, M.S. Phenol removal from synthetic wastewater with powdered activated carbon: Isotherms, kinetics and thermodynamics. Environmental Research and Technology2020, 3, doi:10.35208/ert.692302.
  • 2. Khalid, M.; Joly, G.; Renaud, A.; Magnoux, P. Removal of Phenol from Water by Adsorption Using Zeolites. Industrial & Engineering Chemistry Research2004, 43, 5275–5280, doi:10.1021/ie0400447.
  • 3. Hamad, H.T. Removal of phenol and inorganic metals from wastewater using activated ceramic. Journal of King Saud University -Engineering Sciences2021, 33, 221–226, doi:10.1016/j.jksues.2020.04.006.
  • 4. Akın, D.; Yakar, A.; Gündüz, U. Synthesis of Magnetic Fe3O4-Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability. Water Environment Research2014, 87, 425–436, doi:10.2175/106143014x14062131178673.
  • 5. Bagheri, A.R.; Ghaedi, M.; Asfaram, A.; Bazrafshan, A.A.; Jannesar, R. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology. Ultrasonics Sonochemistry2017, 34, 294–304, doi:10.1016/j.ultsonch.2016.05.047.
  • 6. Bhatia, D.; Datta, D.; Joshi, A.; Gupta, S.; Gote, Y. Adsorption Study for the Separation of Isonicotinic Acid from Aqueous Solution Using Activated Carbon/Fe3O4 Composites. Journal of Chemical & Engineering Data2018, 63, 436–445, doi:10.1021/acs.jced.7b00881.
  • 7. Gong, K.; Hu, Q.; Yao, L.; Li, M.; Sun, D.; Shao, Q.; Qiu, B.; Guo, Z. Ultrasonic Pretreated Sludge Derived Stable Magnetic Active Carbon for Cr(VI) Removal from Wastewater. ACS Sustainable Chemistry & Engineering2018, 6, 7283–7291, doi:10.1021/acssuschemeng.7b04421.
  • 8. Zhang, S.; Wang, Z.; Chen, H.; Kai, C.; Jiang, M.; Wang, Q.; Zhou, Z. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal. Applied Surface Science2018, 440, 1277–1285, doi:10.1016/j.apsusc.2018.01.191.
  • 9. Badi, M.Y.; Azari, A.; Pasalari, H.; Esrafili, A.; Farzadkia, M. Modification of activated carbon with magnetic Fe 3 O 4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. Journal of Molecular Liquids2018, 261, 146–154, doi:10.1016/j.molliq.2018.04.019.
  • 10. Wen, T.; Wang, J.; Yu, S.; Chen, Z.; Hayat, T.; Wang, X. Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of As(V), Cr(VI), Humic Acid, and Dyes. ACS Sustainable Chemistry & Engineering2017, 5, 4371–4380, doi:10.1021/acssuschemeng.7b00418.
  • 11. Kim, E.-A.; Seyfferth, A.L.; Fendorf, S.; Luthy, R.G. Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon. Water Research2011, 45, 453–460, doi:10.1016/j.watres.2010.08.045.
  • 12. Fard, M.A.; Vosoogh, A.; Barkdoll, B.; Aminzadeh, B. Using polymer coated nanoparticles for adsorption of micropollutants from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects2017, 531, 189–197, doi:10.1016/j.colsurfa.2017.08.008.
  • 13. Girgis, B.S.; Temerk, Y.M.; Gadelrab, M.M.; Abdullah, I.D. X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions. Carbon letters2007, 8, 95–100, doi:10.5714/CL.2007.8.2.095.
  • 14. Vaizoğullar, A.İ. TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chemical Engineering Communications2017, 204, 689–697, doi:10.1080/00986445.2017.1306518.
  • 15. Lütke, S.F.; Igansi, A. V; Pegoraro, L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. Journal of Environmental Chemical Engineering2019, 7, 103396,doi:10.1016/j.jece.2019.103396.
  • 16. de Oliveira, G.F.; de Andrade, R.C.; Trindade, M.A.G.; Andrade, H.M.C.; Teodoro de Carvalho, C. Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source Babassu. Química Nova2016, doi:10.21577/0100-4042.20160191.
  • 17. Uğurlu, M.; Gürses, A.; Açıkyıldız, M. Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous and Mesoporous Materials2008, 111, 228–235, doi:10.1016/j.micromeso.2007.07.034.
  • 18. Ugurlu, M.; Yilmaz, S.I.; Vaizogullar, A. Removal of Color and COD from Olive Wastewater by Using Three-Phase Three-Dimensional (3D) Electrode Reactor. Materials Today: Proceedings2019, 18, 1986–1995, doi:10.1016/j.matpr.2019.06.690.
  • 19. Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P.-M.; Crini, G. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions. Bioresource Technology2008, 99, 7573–7586, doi:10.1016/j.biortech.2008.02.011.
Yıl 2021, Cilt: Volume 1 Sayı: Issue 2, 45 - 53, 30.12.2021

Öz

Kaynakça

  • 1. Adar, E.; Atay, İ.N.; Büncü, K.; Bilgili, M.S. Phenol removal from synthetic wastewater with powdered activated carbon: Isotherms, kinetics and thermodynamics. Environmental Research and Technology2020, 3, doi:10.35208/ert.692302.
  • 2. Khalid, M.; Joly, G.; Renaud, A.; Magnoux, P. Removal of Phenol from Water by Adsorption Using Zeolites. Industrial & Engineering Chemistry Research2004, 43, 5275–5280, doi:10.1021/ie0400447.
  • 3. Hamad, H.T. Removal of phenol and inorganic metals from wastewater using activated ceramic. Journal of King Saud University -Engineering Sciences2021, 33, 221–226, doi:10.1016/j.jksues.2020.04.006.
  • 4. Akın, D.; Yakar, A.; Gündüz, U. Synthesis of Magnetic Fe3O4-Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability. Water Environment Research2014, 87, 425–436, doi:10.2175/106143014x14062131178673.
  • 5. Bagheri, A.R.; Ghaedi, M.; Asfaram, A.; Bazrafshan, A.A.; Jannesar, R. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology. Ultrasonics Sonochemistry2017, 34, 294–304, doi:10.1016/j.ultsonch.2016.05.047.
  • 6. Bhatia, D.; Datta, D.; Joshi, A.; Gupta, S.; Gote, Y. Adsorption Study for the Separation of Isonicotinic Acid from Aqueous Solution Using Activated Carbon/Fe3O4 Composites. Journal of Chemical & Engineering Data2018, 63, 436–445, doi:10.1021/acs.jced.7b00881.
  • 7. Gong, K.; Hu, Q.; Yao, L.; Li, M.; Sun, D.; Shao, Q.; Qiu, B.; Guo, Z. Ultrasonic Pretreated Sludge Derived Stable Magnetic Active Carbon for Cr(VI) Removal from Wastewater. ACS Sustainable Chemistry & Engineering2018, 6, 7283–7291, doi:10.1021/acssuschemeng.7b04421.
  • 8. Zhang, S.; Wang, Z.; Chen, H.; Kai, C.; Jiang, M.; Wang, Q.; Zhou, Z. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal. Applied Surface Science2018, 440, 1277–1285, doi:10.1016/j.apsusc.2018.01.191.
  • 9. Badi, M.Y.; Azari, A.; Pasalari, H.; Esrafili, A.; Farzadkia, M. Modification of activated carbon with magnetic Fe 3 O 4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. Journal of Molecular Liquids2018, 261, 146–154, doi:10.1016/j.molliq.2018.04.019.
  • 10. Wen, T.; Wang, J.; Yu, S.; Chen, Z.; Hayat, T.; Wang, X. Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of As(V), Cr(VI), Humic Acid, and Dyes. ACS Sustainable Chemistry & Engineering2017, 5, 4371–4380, doi:10.1021/acssuschemeng.7b00418.
  • 11. Kim, E.-A.; Seyfferth, A.L.; Fendorf, S.; Luthy, R.G. Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon. Water Research2011, 45, 453–460, doi:10.1016/j.watres.2010.08.045.
  • 12. Fard, M.A.; Vosoogh, A.; Barkdoll, B.; Aminzadeh, B. Using polymer coated nanoparticles for adsorption of micropollutants from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects2017, 531, 189–197, doi:10.1016/j.colsurfa.2017.08.008.
  • 13. Girgis, B.S.; Temerk, Y.M.; Gadelrab, M.M.; Abdullah, I.D. X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions. Carbon letters2007, 8, 95–100, doi:10.5714/CL.2007.8.2.095.
  • 14. Vaizoğullar, A.İ. TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chemical Engineering Communications2017, 204, 689–697, doi:10.1080/00986445.2017.1306518.
  • 15. Lütke, S.F.; Igansi, A. V; Pegoraro, L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. Journal of Environmental Chemical Engineering2019, 7, 103396,doi:10.1016/j.jece.2019.103396.
  • 16. de Oliveira, G.F.; de Andrade, R.C.; Trindade, M.A.G.; Andrade, H.M.C.; Teodoro de Carvalho, C. Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source Babassu. Química Nova2016, doi:10.21577/0100-4042.20160191.
  • 17. Uğurlu, M.; Gürses, A.; Açıkyıldız, M. Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous and Mesoporous Materials2008, 111, 228–235, doi:10.1016/j.micromeso.2007.07.034.
  • 18. Ugurlu, M.; Yilmaz, S.I.; Vaizogullar, A. Removal of Color and COD from Olive Wastewater by Using Three-Phase Three-Dimensional (3D) Electrode Reactor. Materials Today: Proceedings2019, 18, 1986–1995, doi:10.1016/j.matpr.2019.06.690.
  • 19. Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P.-M.; Crini, G. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions. Bioresource Technology2008, 99, 7573–7586, doi:10.1016/j.biortech.2008.02.011.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Huseyn Osman Bu kişi benim

Mehmet Ugurlu Bu kişi benim

Ali Imran Vaızogullar Bu kişi benim

Selman Ilteris Yılmaz Bu kişi benim

Abdul Jabbar Chaudhary Bu kişi benim

Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 13 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: Volume 1 Sayı: Issue 2

Kaynak Göster