Derleme
BibTex RIS Kaynak Göster

Application of nanomaterials in animal sciences

Yıl 2022, Cilt: Volume 2 Sayı: Issue 1, 19 - 22, 09.06.2022

Öz

Nanoscience is one of the newest technologies in the world that is widely used in all fields of science and technology such as agriculture, medicine, pharmacy, environment, etc. One of the reasons for the pervasiveness of this technology in all sciences is related to its cross-science nature. This technology has received more attention in recent years due to its low cost, better and faster performance, high stability, and high repeatability. With this technology, farmers can have animals of superior breed and high production and experience the best performance by minimizing various diseases and have a high efficiency of milk and meat production at a lower cost.

Kaynakça

  • 1. Shim, M.; Shi Kam, N.W.; Chen, R.J.; Li, Y.; Dai, H. Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition. Nano Lett. 2002, 2, 285–288, doi:10.1021/nl015692j.
  • 2. Ichikawa, S.; Iwamoto, S.; Watanabe, J. Formation of Biocompatible Nanoparticles by Self-Assembly of Enzymatic Hydrolysates of Chitosan and Carboxymethyl Cellulose. Biosci. Biotechnol. Biochem. 2005, 69, 1637–1642, doi:10.1271/bbb.69.1637.
  • 3. Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16, doi:10.1146/annurev-bioeng-071811-150124.
  • 4. Xun, W.; Shi, L.; Yue, W.; Zhang, C.; Ren, Y.; Liu, Q. Effect of High-Dose Nano-selenium and Selenium–Yeast on Feed Digestibility, Rumen Fermentation, and Purine Derivatives in Sheep. Biol. Trace Elem. Res. 2012, 150, 130–136, doi:10.1007/s12011-012-9452-3.
  • 5. Fondevila, M.; Herrer, R.; Casallas, M.C.; Abecia, L.; Ducha, J.J. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol. 2009, 150, 259–269, doi:10.1016/j.anifeedsci.2008.09.003.
  • 6. Hill, E.K.; Li, J. Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 2017, 8, doi:10.1186/s40104-017-0157-5.
  • 7. Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T.; Semeraro, S.; Turco, G.; Gennaro, R.; Paoletti, S. Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity. Biomacromolecules 2009, 10, 1429–1435, doi:10.1021/bm900039x.
  • 8. Day, L.; Williams, R.P.W.; Otter, D.; Augustin, M.A. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows. J. Dairy Sci. 2015, 98, 3633–3644, doi:10.3168/jds.2014-9285.
  • 9. Haham, M.; Ish-Shalom, S.; Nodelman, M.; Duek, I.; Segal, E.; Kustanovich, M.; Livney, Y.D. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct. 2012, 3, 737, doi:10.1039/c2fo10249h.
  • 10. Feng, M.; Wang, Z.S.; Zhou, A.G.; Ai, D.W. The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pakistan J. Nutr. 2009, 8, 1164–1166.
  • 11. Dickson, R.M.; Lyon, L.A. Unidirectional Plasmon Propagation in Metallic Nanowires. J. Phys. Chem. B 2000, 104, 6095–6098, doi:10.1021/jp001435b.
  • 12. Pineda, L.; Sawosz, E.; Lauridsen, C.; Engberg, R.M.; Elnif, J.; Hotowy, A.; Sawosz, F.; Chwalibog, A. Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Anim. Physiol. 2012, 1, doi:10.2147/OAAP.S35100.
  • 13. Elkloub, K.; Moustafa, E.M.; A., G.A.; Rehan, A.A.A. Effect of dietary nanosilver on broiler performance. Int. J. Poult. Sci. 2015, 14, 177–182.
  • 14. Arshad, M.A.; Ebeid, H.M.; Hassan, F. Revisiting the Effects of Different Dietary Sources of Selenium on the Health and Performance of Dairy Animals: a Review. Biol. Trace Elem. Res. 2021, 199, 3319–3337, doi:10.1007/s12011-020-02480-6.
  • 15. Shi, L.L.; Xun, W.; Yue, W.; Zhang, C.; Ren, Y.; Liu, Q.; Wang, Q.; Shi, L.L. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Anim. Feed Sci. Technol. 2011, 163, 136–142, doi:10.1016/j.anifeedsci.2010.10.016.
  • 16. Rajendran, D. Application of nano minerals in animal production system. Res. J. Biotechnol. 2013, 8, 1–3.
  • 17. Konkol, D.; Wojnarowski, K. The Use of Nanominerals in Animal Nutrition as a Way to Improve the Composition and Quality of Animal Products. J. Chem. 2018, 2018, 1–7, doi:10.1155/2018/5927058.
  • 18. Sobik, M..; Pondman, K..; Eme, B..; Kuipers, B..; Haken, B.. Carbon Nanotubes for Biomedical Applications; Klingeler, R., Sim, R.B., Eds.; Carbon Nanostructures; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; ISBN 978-3-642-14801-9.
  • 19. Konvičná, J.; Vargová, M.; Paulíková, I.; Kováč, G.; Kostecká, Z. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet. Brno 2015, 84, 133–140, doi:10.2754/avb201584020133.
  • 20. Chaudhary, M.; Pandey, M.C.; Radhakrishna, K.; Bawa, A.S. Nano-technology: Applications in food industry. Indian food Ind. 2005, 24.
  • 21. Mekonnen, G. Review on Application of Nanotechnology in Animal Health and Production. J. Nanomed. Nanotechnol. 2021, 12, 559.
  • 22. Shahin, M.A.; Khalil, W.A.; Saadeldin, I.M.; Swelum, A.A.-A.; El-Harairy, M.A. Comparison between the Effects of Adding Vitamins, Trace Elements, and Nanoparticles to SHOTOR Extender on the Cryopreservation of Dromedary Camel Epididymal Spermatozoa. Animals 2020, 10, 78, doi:10.3390/ani10010078.
  • 23. Hosny, N.S.; Hashem, N.M.; Morsy, A.S.; Abo-elezz, Z.R. Effects of Organic Selenium on the Physiological Response, Blood Metabolites, Redox Status, Semen Quality, and Fertility of Rabbit Bucks Kept Under Natural Heat Stress Conditions. Front. Vet. Sci. 2020, 7, doi:10.3389/fvets.2020.00290.
  • 24. Barkhordari, A.; Hekmatimoghaddam, S.; Jebali, A.; Khalili, M.A.; Talebi, A.; Noorani, M. Effect of zinc oxide nanoparticles on viability of human spermatozoa. Iran. J. Reprodustive Med. 2013, 11, 767–771.
  • 25. Ross, S.A.; Srinivas, P.R.; Clifford, A.J.; Lee, S.C.; Philbert, M.A.; Hettich, R.L. New Technologies for Nutrition Research. J. Nutr. 2004, 134, 681–685, doi:10.1093/jn/134.3.681.
  • 26. Batavani, R.A.; Asri, S.; Naebzadeh, H. The Effect of Subclinical Mastitis On Milk Composition In Dairy Cows. Iran. J. Vet. Res. 2007, 8, 205–211.
  • 27. Han, C.; Qi, C.M.; Zhao, B.K.; Cao, J.; Xie, S.Y.; Wang, S.L.; Zhou, W.Z. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J. Vet. Pharmacol. Ther. 2009, 32, 116–123, doi:10.1111/j.1365-2885.2008.01009.x.
Yıl 2022, Cilt: Volume 2 Sayı: Issue 1, 19 - 22, 09.06.2022

Öz

Kaynakça

  • 1. Shim, M.; Shi Kam, N.W.; Chen, R.J.; Li, Y.; Dai, H. Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition. Nano Lett. 2002, 2, 285–288, doi:10.1021/nl015692j.
  • 2. Ichikawa, S.; Iwamoto, S.; Watanabe, J. Formation of Biocompatible Nanoparticles by Self-Assembly of Enzymatic Hydrolysates of Chitosan and Carboxymethyl Cellulose. Biosci. Biotechnol. Biochem. 2005, 69, 1637–1642, doi:10.1271/bbb.69.1637.
  • 3. Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16, doi:10.1146/annurev-bioeng-071811-150124.
  • 4. Xun, W.; Shi, L.; Yue, W.; Zhang, C.; Ren, Y.; Liu, Q. Effect of High-Dose Nano-selenium and Selenium–Yeast on Feed Digestibility, Rumen Fermentation, and Purine Derivatives in Sheep. Biol. Trace Elem. Res. 2012, 150, 130–136, doi:10.1007/s12011-012-9452-3.
  • 5. Fondevila, M.; Herrer, R.; Casallas, M.C.; Abecia, L.; Ducha, J.J. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol. 2009, 150, 259–269, doi:10.1016/j.anifeedsci.2008.09.003.
  • 6. Hill, E.K.; Li, J. Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 2017, 8, doi:10.1186/s40104-017-0157-5.
  • 7. Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T.; Semeraro, S.; Turco, G.; Gennaro, R.; Paoletti, S. Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity. Biomacromolecules 2009, 10, 1429–1435, doi:10.1021/bm900039x.
  • 8. Day, L.; Williams, R.P.W.; Otter, D.; Augustin, M.A. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows. J. Dairy Sci. 2015, 98, 3633–3644, doi:10.3168/jds.2014-9285.
  • 9. Haham, M.; Ish-Shalom, S.; Nodelman, M.; Duek, I.; Segal, E.; Kustanovich, M.; Livney, Y.D. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct. 2012, 3, 737, doi:10.1039/c2fo10249h.
  • 10. Feng, M.; Wang, Z.S.; Zhou, A.G.; Ai, D.W. The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pakistan J. Nutr. 2009, 8, 1164–1166.
  • 11. Dickson, R.M.; Lyon, L.A. Unidirectional Plasmon Propagation in Metallic Nanowires. J. Phys. Chem. B 2000, 104, 6095–6098, doi:10.1021/jp001435b.
  • 12. Pineda, L.; Sawosz, E.; Lauridsen, C.; Engberg, R.M.; Elnif, J.; Hotowy, A.; Sawosz, F.; Chwalibog, A. Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Anim. Physiol. 2012, 1, doi:10.2147/OAAP.S35100.
  • 13. Elkloub, K.; Moustafa, E.M.; A., G.A.; Rehan, A.A.A. Effect of dietary nanosilver on broiler performance. Int. J. Poult. Sci. 2015, 14, 177–182.
  • 14. Arshad, M.A.; Ebeid, H.M.; Hassan, F. Revisiting the Effects of Different Dietary Sources of Selenium on the Health and Performance of Dairy Animals: a Review. Biol. Trace Elem. Res. 2021, 199, 3319–3337, doi:10.1007/s12011-020-02480-6.
  • 15. Shi, L.L.; Xun, W.; Yue, W.; Zhang, C.; Ren, Y.; Liu, Q.; Wang, Q.; Shi, L.L. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Anim. Feed Sci. Technol. 2011, 163, 136–142, doi:10.1016/j.anifeedsci.2010.10.016.
  • 16. Rajendran, D. Application of nano minerals in animal production system. Res. J. Biotechnol. 2013, 8, 1–3.
  • 17. Konkol, D.; Wojnarowski, K. The Use of Nanominerals in Animal Nutrition as a Way to Improve the Composition and Quality of Animal Products. J. Chem. 2018, 2018, 1–7, doi:10.1155/2018/5927058.
  • 18. Sobik, M..; Pondman, K..; Eme, B..; Kuipers, B..; Haken, B.. Carbon Nanotubes for Biomedical Applications; Klingeler, R., Sim, R.B., Eds.; Carbon Nanostructures; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; ISBN 978-3-642-14801-9.
  • 19. Konvičná, J.; Vargová, M.; Paulíková, I.; Kováč, G.; Kostecká, Z. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet. Brno 2015, 84, 133–140, doi:10.2754/avb201584020133.
  • 20. Chaudhary, M.; Pandey, M.C.; Radhakrishna, K.; Bawa, A.S. Nano-technology: Applications in food industry. Indian food Ind. 2005, 24.
  • 21. Mekonnen, G. Review on Application of Nanotechnology in Animal Health and Production. J. Nanomed. Nanotechnol. 2021, 12, 559.
  • 22. Shahin, M.A.; Khalil, W.A.; Saadeldin, I.M.; Swelum, A.A.-A.; El-Harairy, M.A. Comparison between the Effects of Adding Vitamins, Trace Elements, and Nanoparticles to SHOTOR Extender on the Cryopreservation of Dromedary Camel Epididymal Spermatozoa. Animals 2020, 10, 78, doi:10.3390/ani10010078.
  • 23. Hosny, N.S.; Hashem, N.M.; Morsy, A.S.; Abo-elezz, Z.R. Effects of Organic Selenium on the Physiological Response, Blood Metabolites, Redox Status, Semen Quality, and Fertility of Rabbit Bucks Kept Under Natural Heat Stress Conditions. Front. Vet. Sci. 2020, 7, doi:10.3389/fvets.2020.00290.
  • 24. Barkhordari, A.; Hekmatimoghaddam, S.; Jebali, A.; Khalili, M.A.; Talebi, A.; Noorani, M. Effect of zinc oxide nanoparticles on viability of human spermatozoa. Iran. J. Reprodustive Med. 2013, 11, 767–771.
  • 25. Ross, S.A.; Srinivas, P.R.; Clifford, A.J.; Lee, S.C.; Philbert, M.A.; Hettich, R.L. New Technologies for Nutrition Research. J. Nutr. 2004, 134, 681–685, doi:10.1093/jn/134.3.681.
  • 26. Batavani, R.A.; Asri, S.; Naebzadeh, H. The Effect of Subclinical Mastitis On Milk Composition In Dairy Cows. Iran. J. Vet. Res. 2007, 8, 205–211.
  • 27. Han, C.; Qi, C.M.; Zhao, B.K.; Cao, J.; Xie, S.Y.; Wang, S.L.; Zhou, W.Z. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J. Vet. Pharmacol. Ther. 2009, 32, 116–123, doi:10.1111/j.1365-2885.2008.01009.x.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Reviews
Yazarlar

Shabnam Delır Bu kişi benim

Akbar Taghızadeh Bu kişi benim

Hamid Paya Bu kişi benim

Valiollah Palangı Bu kişi benim

Yayımlanma Tarihi 9 Haziran 2022
Gönderilme Tarihi 1 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: Volume 2 Sayı: Issue 1

Kaynak Göster