Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 2 Sayı: 2, 45 - 48, 06.12.2022

Öz

Kaynakça

  • [1] E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B-Environmental, 88 (2009) 1-24.
  • [2] A. Caglar, M.S. Cogenli, A.B. Yurtcan, H. Kivrak, Effective carbon nanotube supported metal (M=Au, Ag, Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells, Renew. Energy, 150 (2020) 78-90.
  • [3] M.S. Cogenli, A. Bayrakçeken Yurtcan, Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation, Mater. Res. Express., 5 (2018) 075513.
  • [4] H. An, H. Cui, D. Zhou, D. Tao, B. Li, J. Zhai, Q. Li, Synthesis and performance of Pd/SnO2-TiO2/MWCNT catalysts for direct formic acid fuel cell application, Electrochim. Acta, 92 (2013) 176-182.
  • [5] Z. Cui, M. Yang, F.J. Di Salvo, Mo2N/C hybrid material as a promising support for the electro-oxidation of methanol and formic acid, Electrochem. Commun., 33 (2013) 63-67.
  • [6] L. Ye, A.H. Mahadi, C. Saengruengrit, J. Qu, F. Xu, S.M. Fairclough, N. Young, P.L. Ho, J. Shan, L. Nguyen, F.F. Tao, K. Tedsree, S.C.E. Tsang, Ceria Nanocrystals Supporting Pd for Formic Acid Electrocatalytic Oxidation: Prominent Polar Surface Metal Support Interactions, ACS Catal., 9 (2019) 5171–5177.
  • [7] C. Rettenmaier, R.M. Aran-Ais, J. Timoshenko, R. Rizo, H.S. Jeon, S. Kühl, S.W. Chee, A. Bergmann, B. Roldan Cuenya, Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes, ACS Catal., 10 (2020) 14540–14551.
  • [8] B. Habibi, S. Ghaderi, Electrooxidation of formic acid and formaldehyde on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode, Iran. J. Chem. Chem. Eng. 35 (2016) 99–112.
  • [9] J. Geng, F. Wang, Y. Wu, G. Lu, The evidences of morphology dependent electroactivity toward Co oxidation over bismuth oxide supported Pt, Catal. Letters, 135 (2010) 114–119.
  • [10] S.W. Ting, S. Cheng, K.Y. Tsang, N. Van Der Laak, K.Y. Chan, Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure, Chem. Commun., 47 (2009) 7333-7335.
  • [11] R. Li, W. Chen, H. Kobayashi, C. Ma, Platinum-nanoparticle-loaded bismuth oxide: An efficient plasmonic photocatalyst active under visible light, Green Chem., 12 (2010) 212-215.
  • [12] W. Raza, A. Khan, U. Alam, M. Muneer, D. Bahnemann, Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method, J. Mol. Struct., 1107 (2016) 39-46.
  • [13] R. Wang, H. Wang, X. Wang, S. Liao, V. Linkov, S. Ji, Effect of the structure of Ni nanoparticles on the electrocatalytic activity of Ni@Pd/C for formic acid oxidation, Int. J. Hydrogen Energy, 38 (2013) 13125-13131.
  • [14] Z. Liang, L. Song, A.O. Elnabawy, N. Marinkovic, M. Mavrikakis, R.R. Adzic, Platinum and Palladium Monolayer Electrocatalysts for Formic Acid Oxidation, Top. Catal., 63 (2020) 742–749.

Pt Nanoparticles Supported on Bi2O3 for Direct Formic Acid Fuel Cells

Yıl 2022, Cilt: 2 Sayı: 2, 45 - 48, 06.12.2022

Öz

Direct formic acid fuel cells (DFAFCs) are one of the potential power sources for the rapidly growing requirement of portable devices. Carbon has traditionally been the most common material of choice for DFAFCs electrocatalyst supports. In this study, Bi2O3 was used for support material because of some advantages such as high corrosion resistance and durability. Bi2O3 supported Pt catalyst was prepared by using microwave irradiation technique. The catalyst was characterized by using SEM/EDS, XRD and FTIR analyses. Electrocatalytic activity of Pt/Bi2O3 catalyst for formic acid oxidation was tested with cyclic voltammetry (CV) and chronoamperometry measurements.

Kaynakça

  • [1] E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B-Environmental, 88 (2009) 1-24.
  • [2] A. Caglar, M.S. Cogenli, A.B. Yurtcan, H. Kivrak, Effective carbon nanotube supported metal (M=Au, Ag, Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells, Renew. Energy, 150 (2020) 78-90.
  • [3] M.S. Cogenli, A. Bayrakçeken Yurtcan, Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation, Mater. Res. Express., 5 (2018) 075513.
  • [4] H. An, H. Cui, D. Zhou, D. Tao, B. Li, J. Zhai, Q. Li, Synthesis and performance of Pd/SnO2-TiO2/MWCNT catalysts for direct formic acid fuel cell application, Electrochim. Acta, 92 (2013) 176-182.
  • [5] Z. Cui, M. Yang, F.J. Di Salvo, Mo2N/C hybrid material as a promising support for the electro-oxidation of methanol and formic acid, Electrochem. Commun., 33 (2013) 63-67.
  • [6] L. Ye, A.H. Mahadi, C. Saengruengrit, J. Qu, F. Xu, S.M. Fairclough, N. Young, P.L. Ho, J. Shan, L. Nguyen, F.F. Tao, K. Tedsree, S.C.E. Tsang, Ceria Nanocrystals Supporting Pd for Formic Acid Electrocatalytic Oxidation: Prominent Polar Surface Metal Support Interactions, ACS Catal., 9 (2019) 5171–5177.
  • [7] C. Rettenmaier, R.M. Aran-Ais, J. Timoshenko, R. Rizo, H.S. Jeon, S. Kühl, S.W. Chee, A. Bergmann, B. Roldan Cuenya, Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes, ACS Catal., 10 (2020) 14540–14551.
  • [8] B. Habibi, S. Ghaderi, Electrooxidation of formic acid and formaldehyde on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode, Iran. J. Chem. Chem. Eng. 35 (2016) 99–112.
  • [9] J. Geng, F. Wang, Y. Wu, G. Lu, The evidences of morphology dependent electroactivity toward Co oxidation over bismuth oxide supported Pt, Catal. Letters, 135 (2010) 114–119.
  • [10] S.W. Ting, S. Cheng, K.Y. Tsang, N. Van Der Laak, K.Y. Chan, Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure, Chem. Commun., 47 (2009) 7333-7335.
  • [11] R. Li, W. Chen, H. Kobayashi, C. Ma, Platinum-nanoparticle-loaded bismuth oxide: An efficient plasmonic photocatalyst active under visible light, Green Chem., 12 (2010) 212-215.
  • [12] W. Raza, A. Khan, U. Alam, M. Muneer, D. Bahnemann, Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method, J. Mol. Struct., 1107 (2016) 39-46.
  • [13] R. Wang, H. Wang, X. Wang, S. Liao, V. Linkov, S. Ji, Effect of the structure of Ni nanoparticles on the electrocatalytic activity of Ni@Pd/C for formic acid oxidation, Int. J. Hydrogen Energy, 38 (2013) 13125-13131.
  • [14] Z. Liang, L. Song, A.O. Elnabawy, N. Marinkovic, M. Mavrikakis, R.R. Adzic, Platinum and Palladium Monolayer Electrocatalysts for Formic Acid Oxidation, Top. Catal., 63 (2020) 742–749.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Mehmed Selim Çögenli 0000-0002-1228-5256

Ayşe Bayrakçeken Yurtcan 0000-0002-8964-0869

Yayımlanma Tarihi 6 Aralık 2022
Gönderilme Tarihi 31 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 2 Sayı: 2

Kaynak Göster