Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 3 Sayı: 2, 61 - 66, 31.12.2023
https://doi.org/10.5152/NanoEra.2023.23009

Öz

Kaynakça

  • 1. Danner MC, Robertson A, Behrends V, Reiss J. Antibiotic pollution in surface fresh waters: occurrence and effects. Sci Total Environ. 2019;664:793-804. [CrossRef]
  • 2. Balarabe BY, Bowmik S, Ghosh A, Maity P. Photocatalytic dye degradation by magnetic XFe2O3 (X: Co, Zn, Cr, Sr, Ni, Cu, Ba, Bi, and Mn) nanocomposites under visible light: a cost efficiency comparison. J Magn Magn Mater. 2022;562:169823. [CrossRef]
  • 3. Yaou Balarabe B, Illiassou Oumarou MN, Koroney AS, Adjama I, Ibrahim Baraze AR. Photo-oxidation of organic dye by Fe2O3 nanoparticles: catalyst, electron acceptor, and polyurethane membrane (PU-Fe2O3) effects. J Nanotechnol. 2023;2023:1-12. [CrossRef]
  • 4. Balarabe BY, Maity P, Teixeira ACSC, Iwarere SA. h-BN nanosheet￾modified Ag2WO4 nanocomposite for improved photocatalytic dye removal: insights into catalyst stability and reusability. Inorg Chem Commun. 2023;158. [CrossRef]
  • 5. Dzinun H, Othman MHD, Ismail AF, Puteh MH, Rahman MA, Jaafar J. Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual-layer hollow fibre membranes. Chem Eng J. 2015;269:255-261. [CrossRef]
  • 6. Balarabe BY, Irédon A, Hassimi M, Illiassou Oumarou MN, Masiyam￾biri V, Gunda TJ. Effective removal of emerging organic pollutants using hybrid Ag@ZnO supported reduced-graphene oxide nanocomposite under visible light. Hybrid Advances. 2023;100114. [CrossRef]
  • 7. Hu X, Hu X, Peng Q, et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem Eng J. 2020;380. [CrossRef]
  • 8. Yaou Balarabe B, Paria S, Sekou Keita D, et al. Enhanced UV-light active α-Bi2O3 nanoparticles for the removal of methyl orange and ciprofloxacin. Inorg Chem Commun. 2022;146:110204. [CrossRef]
  • 9. Masiyambiri V, Yaou Balarabe B, Adjama I, Moussa H, Illiassou Oumarou MN, Iro Sodo AM. A study of the phytoremediation process using water lettuce (Pistia Stratiotes) in the removal of ciprofloxacin. Am J Life Sci Innov. 2023;1(3):1-8. [CrossRef]
  • 10. Jackson BP, Bertsch PM, Cabrera ML, Camberato JJ, Seaman JC, Wood CW. Trace element speciation in poultry litter. J Environ Qual. 2003;32(2):535-540. [CrossRef]
  • 11. Bednar AJ, Garbarino JR, Ferrer I, et al. Photodegradation of roxarsone in poultry litter leachates. Sci Total Environ. 2003;302(1-3):237-245. [CrossRef]
  • 12. Makris KC, Quazi S, Punamiya P, Sarkar D, Datta R. Fate of arsenic in swine waste from concentrated animal feeding operations. J Environ Qual. 2008;37(4):1626-1633. [CrossRef]
  • 13. Liu X, Zhang W, Hu Y, Cheng H. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchem J. 2013;108:38-45. [CrossRef]
  • 14. Olsen CE, Liguori AE, Zong Y, Lantz RC, Burgess JL, Boitano S. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L293-L302. [CrossRef]
  • 15. Stolz JF, Perera E, Kilonzo B, et al. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (Roxarsone) and release of inorganic arsenic by clostridium species. Environ Sci Technol. 2007;41(3):818-823.
  • 16. D’Angelo E, Zeigler G, Beck EG, Grove J, Sikora F. Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields. Sci Total Environ. 2012;438:286-292. [CrossRef]
  • 17. Balarabe BY, Maity P. Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf A Physicochem Eng Asp. 2022;655:130247. [CrossRef]
  • 18. Rauf MA, Meetani MA, Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination. 2011;276(1-3):13-27. [CrossRef]
  • 19. Emadian SS, Ghorbani M, Bakeri G. Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Synth Met. 2020;267:116470.
  • 20. Gil A, García AM, Fernández M, et al. Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants. J Ind Eng Chem. 2017;53:183-191. [CrossRef]
  • 21. Ohtani B, Prieto-Mahaney OO, Li D, Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A. 2010;216(2-3):179-182.
  • 22. Ohtani B. Preparing articles on photocatalysis - beyond the illusions, misconceptions, and speculation. Chem Lett. 2008;37(3):216-229. [CrossRef]
  • 23. Crnjak Orel Z. MICROWAVE-ASSISTED NON-AQUEOUS SYNTHESIS OF ZnO NANOPARTICLES SINTEZA NANODELCEV ZnO V NEVOD￾NEM MEDIJU POD VPLIVOM MIKROVALOV.
  • 24. Shankar R, Groven L, Amert A, Whites KW, Kellar JJ. Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. J Mater Chem. 2011;21(29):10871-10877. [CrossRef]
  • 25. Lamiel C, Nguyen VH, Tuma D, Shim JJ. Non-aqueous synthesis of ultrasmall NiO nanoparticle-intercalated graphene composite as active electrode material for supercapacitors. Mater Res Bull. 2016;83:275-283. [CrossRef]
  • 26. Marycleopha M, Balarabe BY, Adjama I, Hassimi M, Anandaram H, Razak MWA. Anhydrous sol-gel synthesis of anatase TiO2 nanoparticles: evaluating their impact on protein interactions in biological systems. J Trace Elem Med. 2023:100114. [CrossRef]
  • 27. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B. 2016;162:500-510. [CrossRef]
  • 28. Feng Y, Feng N, Wei Y, Zhang G. An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Adv. 2014;4(16):7933-7943. [CrossRef]
  • 29. Karimipour M, Sadeghian M, Molaei M. Fabrication of white light LED photocatalyst ZnO–rGO hetero-nanosheet hybrid materials. J Mater Sci Mater Electron. 2018;29(16):13782-13793. [CrossRef]
  • 30. Bamola P, Sharma M, Dwivedi C, et al. Interfacial interaction of plasmonic nanoparticles (Ag, Au) decorated floweret TiO2 nanorod hybrids for enhanced visible light-driven photocatalytic activity. Mater Sci Eng B. 2021;273:115403. [CrossRef]
  • 31. León A, Reuquen P, Garín C, et al. FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxy estradiol. Appl Sci. 2017;7(1). [CrossRef]
  • 32. Yaou Balarabe B, Maity P. A polymer-Au/TiO2 nano-composite based floating catalyst for photocatalytic dye degradation under natural sunlight. J Photochem Photobiol A. 2024;449:115405. [CrossRef]
  • 33. Yaou Balarabe B. B. Green synthesis of gold-titania nanoparticles for sustainable ciprofloxacin removal and phytotoxicity evaluation on aquatic plant growth. Hybrid Adv. 2023;4:100107. [CrossRef]

Nano-Clean: Titanium Dioxide Nanoparticles Via Sol–Gel for Effective Pollutant Removal

Yıl 2023, Cilt: 3 Sayı: 2, 61 - 66, 31.12.2023
https://doi.org/10.5152/NanoEra.2023.23009

Öz

The research focused on the hydrothermal synthesis of titanium dioxide (TiO2) nanoparticles, with a detailed analysis of their chemical attributes through Fourier transform infrared and ultraviolet–visible diffuse reflectance spectroscopy, emphasizing the optical features. The nanoparticles’ high purity was further affirmed by energy-dispersive X-ray analysis. Transmission electron microscopy revealed spherical particles measuring ≥80 nm. Furthermore, X-ray diffraction and Raman analyses show the anatase structure of the nanomaterial. Under exposure to ultraviolet light, the photocatalytic assessment of 100 mg of the as-synthesized TiO2 nanoparticles exhibited an impressive efficiency of 77%-90%, successfully removing 30 ppm each of rhodamine B, nonylphenol, roxarsone, and ciprofloxacin within a 105-minute timeframe.

Kaynakça

  • 1. Danner MC, Robertson A, Behrends V, Reiss J. Antibiotic pollution in surface fresh waters: occurrence and effects. Sci Total Environ. 2019;664:793-804. [CrossRef]
  • 2. Balarabe BY, Bowmik S, Ghosh A, Maity P. Photocatalytic dye degradation by magnetic XFe2O3 (X: Co, Zn, Cr, Sr, Ni, Cu, Ba, Bi, and Mn) nanocomposites under visible light: a cost efficiency comparison. J Magn Magn Mater. 2022;562:169823. [CrossRef]
  • 3. Yaou Balarabe B, Illiassou Oumarou MN, Koroney AS, Adjama I, Ibrahim Baraze AR. Photo-oxidation of organic dye by Fe2O3 nanoparticles: catalyst, electron acceptor, and polyurethane membrane (PU-Fe2O3) effects. J Nanotechnol. 2023;2023:1-12. [CrossRef]
  • 4. Balarabe BY, Maity P, Teixeira ACSC, Iwarere SA. h-BN nanosheet￾modified Ag2WO4 nanocomposite for improved photocatalytic dye removal: insights into catalyst stability and reusability. Inorg Chem Commun. 2023;158. [CrossRef]
  • 5. Dzinun H, Othman MHD, Ismail AF, Puteh MH, Rahman MA, Jaafar J. Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual-layer hollow fibre membranes. Chem Eng J. 2015;269:255-261. [CrossRef]
  • 6. Balarabe BY, Irédon A, Hassimi M, Illiassou Oumarou MN, Masiyam￾biri V, Gunda TJ. Effective removal of emerging organic pollutants using hybrid Ag@ZnO supported reduced-graphene oxide nanocomposite under visible light. Hybrid Advances. 2023;100114. [CrossRef]
  • 7. Hu X, Hu X, Peng Q, et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem Eng J. 2020;380. [CrossRef]
  • 8. Yaou Balarabe B, Paria S, Sekou Keita D, et al. Enhanced UV-light active α-Bi2O3 nanoparticles for the removal of methyl orange and ciprofloxacin. Inorg Chem Commun. 2022;146:110204. [CrossRef]
  • 9. Masiyambiri V, Yaou Balarabe B, Adjama I, Moussa H, Illiassou Oumarou MN, Iro Sodo AM. A study of the phytoremediation process using water lettuce (Pistia Stratiotes) in the removal of ciprofloxacin. Am J Life Sci Innov. 2023;1(3):1-8. [CrossRef]
  • 10. Jackson BP, Bertsch PM, Cabrera ML, Camberato JJ, Seaman JC, Wood CW. Trace element speciation in poultry litter. J Environ Qual. 2003;32(2):535-540. [CrossRef]
  • 11. Bednar AJ, Garbarino JR, Ferrer I, et al. Photodegradation of roxarsone in poultry litter leachates. Sci Total Environ. 2003;302(1-3):237-245. [CrossRef]
  • 12. Makris KC, Quazi S, Punamiya P, Sarkar D, Datta R. Fate of arsenic in swine waste from concentrated animal feeding operations. J Environ Qual. 2008;37(4):1626-1633. [CrossRef]
  • 13. Liu X, Zhang W, Hu Y, Cheng H. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchem J. 2013;108:38-45. [CrossRef]
  • 14. Olsen CE, Liguori AE, Zong Y, Lantz RC, Burgess JL, Boitano S. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L293-L302. [CrossRef]
  • 15. Stolz JF, Perera E, Kilonzo B, et al. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (Roxarsone) and release of inorganic arsenic by clostridium species. Environ Sci Technol. 2007;41(3):818-823.
  • 16. D’Angelo E, Zeigler G, Beck EG, Grove J, Sikora F. Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields. Sci Total Environ. 2012;438:286-292. [CrossRef]
  • 17. Balarabe BY, Maity P. Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf A Physicochem Eng Asp. 2022;655:130247. [CrossRef]
  • 18. Rauf MA, Meetani MA, Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination. 2011;276(1-3):13-27. [CrossRef]
  • 19. Emadian SS, Ghorbani M, Bakeri G. Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Synth Met. 2020;267:116470.
  • 20. Gil A, García AM, Fernández M, et al. Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants. J Ind Eng Chem. 2017;53:183-191. [CrossRef]
  • 21. Ohtani B, Prieto-Mahaney OO, Li D, Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A. 2010;216(2-3):179-182.
  • 22. Ohtani B. Preparing articles on photocatalysis - beyond the illusions, misconceptions, and speculation. Chem Lett. 2008;37(3):216-229. [CrossRef]
  • 23. Crnjak Orel Z. MICROWAVE-ASSISTED NON-AQUEOUS SYNTHESIS OF ZnO NANOPARTICLES SINTEZA NANODELCEV ZnO V NEVOD￾NEM MEDIJU POD VPLIVOM MIKROVALOV.
  • 24. Shankar R, Groven L, Amert A, Whites KW, Kellar JJ. Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. J Mater Chem. 2011;21(29):10871-10877. [CrossRef]
  • 25. Lamiel C, Nguyen VH, Tuma D, Shim JJ. Non-aqueous synthesis of ultrasmall NiO nanoparticle-intercalated graphene composite as active electrode material for supercapacitors. Mater Res Bull. 2016;83:275-283. [CrossRef]
  • 26. Marycleopha M, Balarabe BY, Adjama I, Hassimi M, Anandaram H, Razak MWA. Anhydrous sol-gel synthesis of anatase TiO2 nanoparticles: evaluating their impact on protein interactions in biological systems. J Trace Elem Med. 2023:100114. [CrossRef]
  • 27. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B. 2016;162:500-510. [CrossRef]
  • 28. Feng Y, Feng N, Wei Y, Zhang G. An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Adv. 2014;4(16):7933-7943. [CrossRef]
  • 29. Karimipour M, Sadeghian M, Molaei M. Fabrication of white light LED photocatalyst ZnO–rGO hetero-nanosheet hybrid materials. J Mater Sci Mater Electron. 2018;29(16):13782-13793. [CrossRef]
  • 30. Bamola P, Sharma M, Dwivedi C, et al. Interfacial interaction of plasmonic nanoparticles (Ag, Au) decorated floweret TiO2 nanorod hybrids for enhanced visible light-driven photocatalytic activity. Mater Sci Eng B. 2021;273:115403. [CrossRef]
  • 31. León A, Reuquen P, Garín C, et al. FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxy estradiol. Appl Sci. 2017;7(1). [CrossRef]
  • 32. Yaou Balarabe B, Maity P. A polymer-Au/TiO2 nano-composite based floating catalyst for photocatalytic dye degradation under natural sunlight. J Photochem Photobiol A. 2024;449:115405. [CrossRef]
  • 33. Yaou Balarabe B. B. Green synthesis of gold-titania nanoparticles for sustainable ciprofloxacin removal and phytotoxicity evaluation on aquatic plant growth. Hybrid Adv. 2023;4:100107. [CrossRef]
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikro ve Nanosistemler
Bölüm Research Articles
Yazarlar

Bachir Yaou Balarabe Bu kişi benim

Irédon Adjama Bu kişi benim

Moumouni Wagé Abdoul Razak Bu kişi benim

Hassimi Moussa Bu kişi benim

Abdoul Bari Idı Awalı Bu kişi benim

Maman Nasser Illıassou Oumarou Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 11 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 2

Kaynak Göster