In recent years, the bacterial synthesis method for nanoparticle production has gained significant attention in research due to its advantages over physical and chemical techniques. In this study, silver-doped graphene oxide (GO) nanoparticles were simultaneously reduced in composite form in a bacterial culture medium. The bacterial synthesis method simultaneously reduced the silver (Ag)-doped graphene oxide (GO: Ag) nanoparticles. The size and shape of the reduced GO:Ag nanoparticles were determined using advanced spectroscopic imaging techniques. Transmission electron microscopy (TEM) images of GO: Ag nanoparticles have reported their approximate dimensions to be around 30-70 nm. Thin films were created by spreading GO:Ag nanoparticles onto glass and p-Si surfaces and drying them at 350 °C. The optical, structural, and electronic properties of these thin films were investigated. The energy band gap value of the film was estimated as 0.75 eV employing the doublebeam UV-Vis spectrophotometer technique to reveal its optical properties. The given value suggests the generation of an electron-rich thin film with a narrow energy band gap. X-ray diffraction (XRD) and Raman techniques were used to explore the structural properties of a GO:Ag semiconductor thin film. The Raman technique yielded peak values for the GO:Ag structure, specifically in the D and G band energy values, at 1348 and 1568 cm-1 . Rectifying contacts with a diameter of 1 micrometer were made using Ag metal on this film structure. The current-voltage characteristics of the Ag/GO: Ag/p-Si/Ag structure made after these contacts were investigated.
Primary Language | English |
---|---|
Subjects | Nanoelectronics |
Journal Section | Research Articles |
Authors | |
Publication Date | December 20, 2024 |
Submission Date | October 9, 2024 |
Acceptance Date | November 15, 2024 |
Published in Issue | Year 2024 Volume: 4 Issue: 2 |
Content of this journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.