Review Article
BibTex RIS Cite

Overview of radiation shielding properties of tungsten oxide nanofibers

Year 2024, Volume: 4 Issue: 2, 81 - 90, 20.12.2024
https://doi.org/10.5281/zenodo.14533985

Abstract

Nanotechnology has garnered significant attention for providing innovative solutions across various fields, including fire safety, agriculture, corrosion protection, and environmental management. In the context of fire safety, nanostructured materials play a critical role, while in agriculture, nanoagrochemicals enhance crop protection and improve productivity. Similarly, nanoparticles used in corrosion protection significantly prolong the lifespan of materials. From an environmental perspective, these nanomaterials present eco-friendly and
sustainable alternatives. Additionally, tungsten oxide (WO₃) has emerged as a key material in several industrial and technological applications, including diagnostic tools, protective equipment in healthcare, photocatalysis, electrochromic devices, energy storage, and radiation protection. The research also highlights the selective cytotoxicity of tungsten oxide-based composites, such as tungsten oxide-polyvinyl alcohol (PVA), tungsten oxidepolyvinylpyrrolidone (PVP), and tungsten oxide-thermoplastic polyurethane (TPU), particularly in targeting cancer cells, along with their radioactive properties. The process through which these materials are transformed into fibers what it is also discussed in detail.

References

  • 1. Rabajczyk A, Zielecka M, Popielarczyk T, Sowa T. Nanotechnology in Fire Protection—Application and Requirements. Materials (Basel). 2021;14(24):7849. doi:10.3390/ma14247849
  • 2. Jampílek J, Kráľová K. Benefits and Potential Risks of Nanotechnology Applications in Crop Protection. In: Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. ; 2018:189-246. doi:10.1007/978-3-319-91161-8_8
  • 3. Gupta P, Sharma AK, Singh I. Characterization and exploring antibacterial response of tungsten oxide nanoparticles synthesized using microwave-metal discharge in atmospheric air. Ceram Int. 2023;49(22):35585-35596. doi:10.1016/j.ceramint.2023.08.237
  • 4. Khazaalah TH, Shahrim Mustafa I, Al-Ghamdi H, et al. The Effect of WO3-Doped Soda Lime Silica SLS Waste Glass to Develop Lead-Free Glass as a Shielding Material against Radiation. Sustainability. 2022;14(4):2413. doi:10.3390/su14042413
  • 5. Duan G, Chen L, Jing Z, et al. Robust Antibacterial Activity of Tungsten Oxide (WO 3-x ) Nanodots. Chem Res Toxicol. 2019;32(7):1357-1366. doi:10.1021/acs.chemrestox.8b00399
  • 6. Baig U, Gondal MA, Rehman S, Akhtar S. Facile synthesis, characterization of nano-tungsten trioxide decorated with silver nanoparticles and their antibacterial activity against water-borne gram-negative pathogens. Appl Nanosci. 2020;10(3):851-860. doi:10.1007/s13204-019-01186-z
  • 7. Amari A, Osman H, Boujelbene M, Abdulameer MK, Scholz M, Sammen SS. Enhancing Oil–Water Separation Efficiency with WO3/MXene Composite Membrane. Water. 2024;16(13):1767. doi:10.3390/w16131767
  • 8. Zhang P, Li Y, Zhang H, et al. Microporous tungsten oxide spheres coupled with Ti 3 C 2 T x nanosheets for highvolumetric capacitance supercapacitors. Nanotechnology. 2024;35(49):495401. doi:10.1088/1361-6528/ad6c55
  • 9. Swaminathan R, Pazhamalai P, Krishnamoorthy K, Natraj V, Krishnan V, Kim S-J. Tungsten trioxide based highperformance supercapacitor for application in electric vehicles. J Energy Storage. 2024;83:110642. doi:10.1016/j.est.2024.110642
  • 10. Siri JGS, Fernando CAN, De Silva SNT. Nanotechnology and Protection of Intellectual Property: Emerging Trends. Recent Pat Nanotechnol. 2020;14(4):307-327. doi:10.2174/1872210514666200612174317
  • 11. Nouri M, Sadeghi MT, Rashidi A, Norouzbeigi R. Hydrothermally synthetized WO3 coated stainless steel mesh for oil–water separation purposes. J Pet Explor Prod Technol. 2024;14(5):1247-1258. doi:10.1007/s13202-023-01741-z
  • 12. Said A, Al Abdulgader H, Alsaeed D, Drmosh QA, Baroud TN, Saleh TA. Hydrophobic tungsten oxide-based mesh modified with hexadecanoic branches for efficient oil/water separation. J Water Process Eng. 2022;49:102931. doi:10.1016/j.jwpe.2022.102931
  • 13. Zheng G, Jiang S, Cai M, Zhang F, Yu H. WO3/FeOOH heterojunction for improved charge carrier separation and efficient photoelectrochemical water splitting. J Alloys Compd. 2024;981:173637. doi:10.1016/j.jallcom.2024.173637
  • 14. Morankar PJ, Amate RU, Teli AM, et al. Nanogranular advancements in molybdenum-doped tungsten oxide for superior electrochromic energy storage. J Energy Storage. 2024;84:110978. doi:10.1016/j.est.2024.110978
  • 15. Ambika MR, Nagaiah N, Prashantha K. Thermal resistance and mechanical stability of tungsten oxide filled polymer composite radiation shields. Int J Polym Anal Charact. 2020;25(6):431-443. doi:10.1080/1023666X.2020.1803566
  • 16. Li Y, Zhang C, Li H, Zhang R, Cai X. Preparation, characterization and targeted antitumor effects of polyglycerol-hyaluronic acid functionalized tungsten oxide nanocomposites. Mater Today Commun. 2023;34:105139. doi:10.1016/j.mtcomm.2022.105139
  • 17. Zhou Y, Yang N, Gong F, et al. Oxygen-Deficient Tungsten Oxide (WO x ) Nanobelts with pH-Sensitive Degradation for Enhanced Sonodynamic Therapy of Cancer. ACS Nano. 2022;16(10):17242-17256. doi:10.1021/acsnano.2c07903
  • 18. Liang H, Xi H, Liu S, Zhang X, Liu H. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR lightenhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale. 2019;11(39):18183-18190. doi:10.1039/C9NR06222J
  • 19. Hassanvand A, Zare MH, Shams A, Nickfarjam A, Shabani M, Rahavi H. Investigation of The Effect of Radiosensitization of Tungsten Oxide Nanoparticles on AGS Cell Line of Human Stomach Cancer in Megavoltage Photons Radiation. J Nanostructures. 2019;9(3):563-578. doi:https://doi.org/10.22052/JNS.2019.03.018
  • 20. Zhou Z, Kong B, Yu C, et al. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Sci Rep. 2014;4(1):3653. doi:10.1038/srep03653
  • 21. Yong LX, Calautit JK. A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment. Sustainability. 2023;15(4):3394. doi:10.3390/su15043394
  • 22. Han B, Popov AL, Shekunova TO, et al. Highly Crystalline WO3 Nanoparticles Are Nontoxic to Stem Cells and Cancer Cells. J Nanomater. 2019;2019:1-13. doi:10.1155/2019/5384132
  • 23. Bouchikhi B, Zaim O, Bari N El, Motia S. Semiconducting WO3 Nanowires for Biomedical Applications. In: Nanowires. CRC Press; 2023.
  • 24. Huang Z, Song J, Pan L, Zhang X, Wang L, Zou J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv Mater. 2015;27(36):5309-5327. doi:10.1002/adma.201501217
  • 25. Santos L, Silveira CM, Elangovan E, et al. Synthesis of WO3 nanoparticles for biosensing applications. Sensors Actuators B Chem. 2016;223:186-194. doi:10.1016/j.snb.2015.09.046
  • 26. Kazuhiro S, Yoshinari K. Tungsten oxide secondary structure having antimicrobial activity. Published online 2011.
  • 27. M G, N SK, Sivakumar C, K M. Nanostructured and nanocomposite Tungsten Oxide electrodes for electrochemical energy storage: A Short Review. NanoNEXT. 2022;3(2):1-7. doi:10.54392/nnxt2221
  • 28. N.B. RK, Crasta V, Praveen BM. Enhancement of optical, mechanical and micro structural properties in nanocomposite films of PVA doped with WO3 nanoparticles. Int J Struct Integr. 2015;6(3):338-354. doi:10.1108/IJSI-08-2014-0036
  • 29. Pantilimon MC, Kang T-S, Lee S-J. Synthesis of Nano-Sized Tungsten Oxide (WO 3 ) Powder by a Polymer Solution Route. Sci Adv Mater. 2017;9(2):280-284. doi:10.1166/sam.2017.2563
  • 30. Bashir A, Khan SR, Aqib AI, Shafique L, Ataya FS. Multifunctional integration of tungsten oxide (WO3) coating: A versatile approach for enhanced performance of antibiotics against single mixed bacterial infections. Microb Pathog. 2024;189:106571. doi:10.1016/j.micpath.2024.106571
  • 31. Al Miad A, Saikat SP, Alam MK, Sahadat Hossain M, Bahadur NM, Ahmed S. Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. Nanoscale Adv. 2024;6(19):4781-4803. doi:10.1039/D4NA00517A
  • 32. Liu J, Zhang G, Guo K, et al. Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties. Micromachines. 2020;11(3):311. doi:10.3390/mi11030311
  • 33. Bi Z, Zhao N, Guo X. Electrochromic-supercapacitors based on tungsten oxide and prussian blue. Energy Storage Sci Technol. 2021;10(3):952-957.
  • 34. Cong S, Geng F, Zhao Z. Tungsten Oxide Materials for Optoelectronic Applications. Adv Mater. 2016;28(47):10518-10528. doi:10.1002/adma.201601109
  • 35. Novak TG, Kim J, DeSario PA, Jeon S. Synthesis and applications of WO 3 nanosheets: the importance of phase, stoichiometry, and aspect ratio. Nanoscale Adv. 2021;3(18):5166-5182. doi:10.1039/D1NA00384D
  • 36. Kaur J, Kaur Savita N, Gupta T, Chauhan RP, Sharma A. Study on the effect of UV Exposure on WO3/PVA based Nanocomposite Films. Indian J Eng Mater Sci. 2023;30(03). doi:10.56042/ijems.v30i3.3701
  • 37. Sushko NI, Tretinnikov ON. Structure and photochromic properties of poly(vinylalcohol)/phosphotungstic acid nanocomposite films. J Appl Spectrosc. 2010;77(4):516- 521. doi:10.1007/s10812-010-9362-0
  • 38. Zhang L, Wang H, Liu J, Zhang Q, Yan H. Nonstoichiometric tungsten oxide: structure, synthesis, and applications. J Mater Sci Mater Electron. 2020;31(2):861-873. doi:10.1007/s10854-019-02596-z
  • 39. Martinez-Juárez J, Díaz-Reyes J. A method for deposition of tungsten trioxide (WO3). In: Spigulis J, Krumins A, Millers D, et al., eds. ; 2008:71420Q-71420Q - 6. doi:10.1117/12.815958
  • 40. Birhan D. Grafen katkılı nanokompozit fotokatalizörlerin üretimi, karakterizasyonu, termal, fotokatalitik, antibakteriyel ve mekanik özelliklerinin incelenmesi. Published online 2019.
  • 41. Gao Y, Gao F, Chen K, Ma J. Cerium oxide nanoparticles in cancer. Onco Targets Ther. Published online May 2014:835. doi:10.2147/OTT.S62057
  • 42. Tungsten trioxide. National Center for Biotechnology Information. PubChem Compound Summary for CID 14811. Published 2024. https://pubchem.ncbi.nlm.nih.gov/compound/Tungsten-trioxide
  • 43. S. G, L. K, R. C. Radiation shielding properties of WO₃-polymer composites. In: Materials Today: Proceedings. ; 2021:34: 1-7.
  • 44. Rithin Kumar NB, Crasta V, Bhajantri RF, Praveen BM. Microstructural and Mechanical Studies of PVA Doped with ZnO and WO 3 Composites Films. J Polym. 2014;2014:1-7. doi:10.1155/2014/846140
  • 45. Lilleby Helberg RM, Dai Z, Ansaloni L, Deng L. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance. Green Energy Environ. 2020;5(1):59-68. doi:10.1016/j.gee.2019.10.001
  • 46. Zhuang D, Zhang Z, Weng J, Wang J, Zhang H, Cheng W. Amorphous Hydrated Tungsten Oxides with Enhanced Pseudocapacitive Contribution for Aqueous Zinc‐Ion Electrochromic Energy Storage. Adv Energy Mater. 2024;14(40). doi:10.1002/aenm.202402603
  • 47. Kozlov DA, Shcherbakov AB, Kozlova TO, et al. Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO3 Nanoparticles. Molecules. 2019;25(1):154. doi:10.3390/molecules25010154
  • 48. Krishna Prasad A, Kim J-Y, Kang S-H, Ahn K-S. Molybdenum induced defective WO3 multifunctional nanostructure as an electrochromic energy storage device: Novel assembled photovoltaic-electrochromic Mo–WO3 film. J Ind Eng Chem. 2024;135:388-396. doi:10.1016/j.jiec.2024.01.050
  • 49. Pepe Y, Akkoyun S, Asci N, et al. Tungsten oxide filled nanofibers for optical limiting in near infrared region. Opt Laser Technol. 2024;176:110970. doi:10.1016/j.optlastec.2024.110970
  • 50. Muthamma M V, Gudennavar BS, Gudennavar SB. Attenuation parameters of polyvinyl alcohol-tungsten oxide composites at the photon energies 5.895, 6.490, 59.54 and 662 keV. Polish J Med Phys Eng. 2020;26(2):77-85. doi:10.2478/pjmpe-2020-0009
  • 51. Alharbi KH, Alharbi W, El-Morsy MA, Farea MO, Menazea AA. Optical, Thermal, and Electrical Characterization of Polyvinyl Pyrrolidone/Carboxymethyl Cellulose Blend Scattered by Tungsten-Trioxide Nanoparticles. Polymers (Basel). 2023;15(5):1223. doi:10.3390/polym15051223
  • 52. Chenari HM, Kangarlou H. Electrospun tungsten oxide NPs/PVA nanofibers: A study on the morphology and Kramers–Kronig analysis of infrared reflectance spectra. Phys B Condens Matter. 2016;499:38-43. doi:10.1016/j.physb.2016.07.004
  • 53. Nguyen T-A, Park S, Kim JB, et al. Polycrystalline tungsten oxide nanofibers for gas-sensing applications. Sensors Actuators B Chem. 2011;160(1):549-554. doi:10.1016/j.snb.2011.08.028
  • 54. Kumar NBR, Crasta V, Praveen BM, Shreeprakash B, Viju F. Micro structural studies of PVA doped with metal oxide nanocomposites films. In: ; 2014:493-495. doi:10.1063/1.4872650
  • 55. Bondarchuk O, Huang X, Kim J, et al. Formation of Monodisperse (WO 3 ) 3 Clusters on TiO 2 (110). Angew Chemie Int Ed. 2006;45(29):4786-4789. doi:10.1002/anie.200600837
  • 56. Christensen M, Wimmer E, Gilbert MR, Geller C, Dron B, Nguyen-Manh D. Atomistic modelling of tritium thermodynamics and kinetics in tungsten and its oxides. Nucl Mater Energy. 2024;38:101611. doi:10.1016/j.nme.2024.101611
  • 57. Hussan G, Khan S, Ahmad R, Farooq A, Anwar MZ. Effect of WO 3 on the radiation shielding ability of TeO 2 –TiO 2 –WO 3 glass system. Radiochim Acta. 2023;111(5):401-413. doi:10.1515/ract-2022-0057
  • 58. Mezher MJ, Kudhier MA, Dakhil OAA. Using Zno-Cds Composite Nanofibers in the Photolytic Activity Under Sunlight Irradiation. SSRN Electron J. Published online 2023. doi:10.2139/ssrn.4332473
There are 58 citations in total.

Details

Primary Language English
Subjects Molecular and Organic Electronics
Journal Section Reviews
Authors

Eylül Gücenmez 0009-0001-9496-9984

Serhat Duras 0009-0007-5149-6199

Ahmet Koluman 0000-0001-5308-8884

Publication Date December 20, 2024
Submission Date October 19, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite