Review Article
BibTex RIS Cite

Functionalized liposomes for colorectal cancer therapy

Year 2024, Volume: 4 Issue: 2, 90 - 101, 20.12.2024
https://doi.org/10.5281/zenodo.14534004

Abstract

Colorectal cancer (CRC) is one of the most common cancers. Many patients do not live for several years following their diagnosis, highlighting the urgent need for new treatment options, including new drug delivery methods. An effective strategy to increase the effectiveness of the treatment ofthis cancer is the use of a liposomal delivery system, which provides the possibility of providing hydrophobic and hydrophilic compounds with better biocompatibility and reduction of side effects by using several advantages, thus causing anti-cancer activity. Better tumor, drug accumulation is longer and they do not show any cytotoxic effect on normal cells. In this review, we will present nanoliposomes containing various compounds and ligands studied in CRC treatment. We will discuss on the benefits of liposomal administration in various forms, along with their effectiveness, specificity,
and drug accumulation. Nanoliposome carriers have enormous potential to overcome the present constraints of cancer treatment, and the creation of this technology gives new possibilities in CRC treatment.

References

  • 1. Bansal D, Gulbake A, Tiwari J, Jain SK. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int J Biol Macromol. 2016;82:687-695. doi:10.1016/j.ijbiomac.2015.09.052
  • 2. Lohlamoh W, Soontornworajit B, Rotkrua P. Anti￾Proliferative Effect of Doxorubicin-Loaded AS1411 Aptamer on Colorectal Cancer Cell. Asian Pacific J Cancer Prev. 2021;22(7):2209-2219. doi:10.31557/APJCP.2021.22.7.2209
  • 3. Etissa EK, Assefa M, Ayele BT. Prognosis of colorectal cancer in Tikur Anbessa Specialized Hospital, the only oncology center in Ethiopia. Chuu C-P, ed. PLoS One. 2021;16(2):e0246424. doi:10.1371/journal.pone.0246424
  • 4. Naeimi R, Najafi R, Molaei P, Amini R, Pecic S. Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol. 2022;936:175350. doi:10.1016/j.ejphar.2022.175350
  • 5. Yu T, Wu C, Zhu C, et al. Oral Administration of Liposome￾Apatinib and Locally Delivery of Docetaxel/MPEG-PCL by Fibrin Glue Synergistically Improve Therapeutic Effect in Colorectal Cancer. J Biomed Nanotechnol. 2018;14(12):2077-2091. doi:10.1166/jbn.2018.2651
  • 6. Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. J Drug Deliv Sci Technol. 2020;60:102018. doi:10.1016/j.jddst.2020.102018
  • 7. Enrico C. Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases. In: ; 2019:91-123. doi:10.1016/B978-0-444-64185-4.00003-4
  • 8. Ali ES, Sharker SM, Islam MT, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol. 2021;69:52-68. doi:10.1016/j.semcancer.2020.01.011
  • 9. Haidar ZS. Polymicellar-based drug delivery systems for use in nanodentistry. Biofunctional Mater. Published online March 29, 2023. doi:10.55092/bm20230003
  • 10. Vyas K, Rathod M, Patel MM. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. Nanomedicine Nanotechnology, Biol Med. 2023;49:102662. doi:10.1016/j.nano.2023.102662
  • 11. Kumari S, Goyal A, Sönmez Gürer E, et al. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics. 2022;14(5):1091. doi:10.3390/pharmaceutics14051091
  • 12. Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology. 2022;20(1):361. doi:10.1186/s12951-022-01567-7
  • 13. Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surfaces B Biointerfaces. 2019;180:9-22. doi:10.1016/j.colsurfb.2019.04.035
  • 14. Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27(7):742-761. doi:10.1080/1061186X.2018.1527337
  • 15. Ge L, Tan X, Sheng R, Xiao J. Layer-by-layer self-assembly of giant polyelectrolyte microcapsules templated by microbubbles as potential hydrophilic or hydrophobic drug delivery system. Colloid Interface Sci Commun. 2022;47:100603. doi:10.1016/j.colcom.2022.100603
  • 16. Musielak E, Feliczak-Guzik A, Nowak I. Synthesis and Potential Applications of Lipid Nanoparticles in Medicine. Materials (Basel). 2022;15(2):682. doi:10.3390/ma15020682
  • 17. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal Bansal D, Gulbake A, Tiwari J, Jain SK. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int J Biol Macromol. 2016;82:687-695. doi:10.1016/j.ijbiomac.2015.09.052
  • 18. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. Published online February 2015:975. doi:10.2147/IJN.S68861
  • 19. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9(2):12. doi:10.3390/pharmaceutics9020012
  • 20. Ilfeld BM, Eisenach JC, Gabriel RA. Clinical Effectiveness of Liposomal Bupivacaine Administered by Infiltration or Peripheral Nerve Block to Treat Postoperative Pain. Anesthesiology. 2021;134(2):283-344. doi:10.1097/ALN.0000000000003630
  • 21. Olusanya T, Haj Ahmad R, Ibegbu D, Smith J, Elkordy A. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules. 2018;23(4):907. doi:10.3390/molecules23040907
  • 22. Dragovich T, Mendelson D, Kurtin S, Richardson K, Von Hoff D, Hoos A. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol. 2006;58(6):759-764. doi:10.1007/s00280-006-0235-4
  • 23. Pola R, Pokorná E, Vočková P, et al. Cytarabine nanotherapeutics with increased stability and enhanced lymphoma uptake for tailored highly effective therapy of mantle cell lymphoma. Acta Biomater. 2021;119:349-359. doi:10.1016/j.actbio.2020.11.014
  • 24. Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli J (Jahan), Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release. 2023;355:552-578. doi:10.1016/j.jconrel.2023.02.009
  • 25. Mojarad-Jabali S, Mahdinloo S, Farshbaf M, et al. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv. 2022;19(6):685-705. doi:10.1080/17425247.2022.2083106
  • 26. Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration. 2021;1(3). doi:10.1002/EXP.20210089
  • 27. Din F ud, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;Volume 12:7291-7309. doi:10.2147/IJN.S146315
  • 28. Bigdeli A, Makhmalzadeh BS, Feghhi M, SoleimaniBiatiani E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation. Drug Deliv Transl Res. 2023;13(4):1035-1047. doi:10.1007/s13346-022-01266-8
  • 29. Haneef J, Ali S, Chadha R. Emerging Multi-Drug Eutectics: Opportunities and Challenges. AAPS PharmSciTech. 2021;22(2):66. doi:10.1208/s12249-021-01939-6
  • 30. Gu W, Meng F, Haag R, Zhong Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J Control Release. 2021;329:676-695. doi:10.1016/j.jconrel.2020.10.003
  • 31. Tangsiri M, Hheidari A, Liaghat M, et al. Promising applications of nanotechnology in inhibiting chemo￾resistance in solid tumors by targeting epithelial￾mesenchymal transition EMT). Biomed Pharmacother. 2024;170:115973. doi:10.1016/j.biopha.2023.115973
  • 32. Zhang N, Shu G, Qiao E, et al. DNA-Functionalized Liposomes In Vivo Fusion for NIR-II/MRI Guided Pretargeted Ferroptosis Therapy of Metastatic Breast Cancer. ACS Appl Mater Interfaces. 2022;14(18):20603-20615. doi:10.1021/acsami.2c01105
  • 33. Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med Drug Discov. 2020;6:100024. doi:10.1016/j.medidd.2020.100024
  • 34. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an Emerging Platform for Cancer Therapy. In: Nano-Enabled Medical Applications. ; 2020.
  • 35. Peretz Damari S, Shamrakov D, Varenik M, et al. Practical aspects in size and morphology characterization of drug￾loaded nano-liposomes. Int J Pharm. 2018;547(1-2):648- 655. doi:10.1016/j.ijpharm.2018.06.037
  • 36. Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin. 2010;60(5):277-300. doi:10.3322/caac.20073
  • 37. Banerjee K, Banerjee S, Mandal M. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J Colloid Interface Sci. 2017;491:98-110. doi:10.1016/j.jcis.2016.12.025
  • 38. Kikuchi H, Yuan B, Hu X, Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res. 2019;9(8):1517-1535. http://www.ncbi.nlm.nih.gov/pubmed/31497340
  • 39. Țigu AB, Toma V-A, Moț AC, et al. The Synergistic Antitumor Effect of 5-Fluorouracil Combined with Allicin against Lung and Colorectal Carcinoma Cells. Molecules. 2020;25(8):1947. doi:10.3390/molecules25081947
  • 40. Patras L, Sylvester B, Luput L, et al. Liposomal prednisolone phosphate potentiates the antitumor activity of liposomal 5-fluorouracil in C26 murine colon carcinoma in vivo. Cancer Biol Ther. 2017;18(8):616-626. doi:10.1080/15384047.2017.1345392
  • 41. Shulpekova Y, Nechaev V, Kardasheva S, et al. The Concept of Folic Acid in Health and Disease. Molecules. 2021;26(12):3731. doi:10.3390/molecules26123731
  • 42. Yang C, Liu H-Z, Fu Z-X. Effects of PEG-liposomal oxaliplatin on apoptosis, and expression of Cyclin A and Cyclin D1 in (Jahan), Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release. 2023;355:552-578. doi:10.1016/j.jconrel.2023.02.009
  • 25. Mojarad-Jabali S, Mahdinloo S, Farshbaf M, et al. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv. 2022;19(6):685-705. doi:10.1080/17425247.2022.2083106
  • 26. Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration. 2021;1(3). doi:10.1002/EXP.20210089
  • 27. Din F ud, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;Volume 12:7291-7309. doi:10.2147/IJN.S146315
  • 28. Bigdeli A, Makhmalzadeh BS, Feghhi M, SoleimaniBiatiani E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation. Drug Deliv Transl Res. 2023;13(4):1035-1047. doi:10.1007/s13346-022-01266-8
  • 29. Haneef J, Ali S, Chadha R. Emerging Multi-Drug Eutectics: Opportunities and Challenges. AAPS PharmSciTech. 2021;22(2):66. doi:10.1208/s12249-021-01939-6
  • 30. Gu W, Meng F, Haag R, Zhong Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J Control Release. 2021;329:676-695. doi:10.1016/j.jconrel.2020.10.003
  • 31. Tangsiri M, Hheidari A, Liaghat M, et al. Promising applications of nanotechnology in inhibiting chemo￾resistance in solid tumors by targeting epithelial￾mesenchymal transition (EMT). Biomed Pharmacother. 2024;170:115973. doi:10.1016/j.biopha.2023.115973
  • 32. Zhang N, Shu G, Qiao E, et al. DNA-Functionalized Liposomes In Vivo Fusion for NIR-II/MRI Guided Pretargeted Ferroptosis Therapy of Metastatic Breast Cancer. ACS Appl Mater Interfaces. 2022;14(18):20603-20615. doi:10.1021/acsami.2c01105
  • 33. Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med Drug Discov. 2020;6:100024. doi:10.1016/j.medidd.2020.100024
  • 34. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an Emerging Platform for Cancer Therapy. In: Nano-Enabled Medical Applications. ; 2020.
  • 35. Peretz Damari S, Shamrakov D, Varenik M, et al. Practical aspects in size and morphology characterization of drug￾loaded nano-liposomes. Int J Pharm. 2018;547(1-2):648- 655. doi:10.1016/j.ijpharm.2018.06.037
  • 36. Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin. 2010;60(5):277-300. doi:10.3322/caac.20073
  • 37. Banerjee K, Banerjee S, Mandal M. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J Colloid Interface Sci. 2017;491:98-110. doi:10.1016/j.jcis.2016.12.025
  • 38. Kikuchi H, Yuan B, Hu X, Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res. 2019;9(8):1517-1535. http://www.ncbi.nlm.nih.gov/pubmed/31497340
  • 39. Țigu AB, Toma V-A, Moț AC, et al. The Synergistic Antitumor Effect of 5-Fluorouracil Combined with Allicin against Lung and Colorectal Carcinoma Cells. Molecules. 2020;25(8):1947. doi:10.3390/molecules25081947
  • 40. Patras L, Sylvester B, Luput L, et al. Liposomal prednisolone phosphate potentiates the antitumor activity of liposomal 5-fluorouracil in C26 murine colon carcinoma in vivo. Cancer Biol Ther. 2017;18(8):616-626. doi:10.1080/15384047.2017.1345392
  • 41. Shulpekova Y, Nechaev V, Kardasheva S, et al. The Concept of Folic Acid in Health and Disease. Molecules. 2021;26(12):3731. doi:10.3390/molecules26123731
  • 42. Yang C, Liu H-Z, Fu Z-X. Effects of PEG-liposomal oxaliplatin on apoptosis, and expression of Cyclin A and Cyclin D1 in doi:10.1016/j.biopha.2019.109142
  • 47. Zhang B, Wang T, Yang S, et al. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release. 2016;238:10-21. doi:10.1016/j.jconrel.2016.07.022
  • 48. Ding M, Zhang Y, Li J, Pu K. Bioenzyme-based nanomedicines for enhanced cancer therapy. Nano Converg. 2022;9(1):7. doi:10.1186/s40580-022-00297-8
  • 49. Miller B, Sewell-Loftin MK. Mechanoregulation of Vascular Endothelial Growth Factor Receptor 2 in Angiogenesis. Front Cardiovasc Med. 2022;8. doi:10.3389/fcvm.2021.804934
  • 50. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J Clin Med. 2019;9(1):84. doi:10.3390/jcm9010084
  • 51. Wang Z, Dabrosin C, Yin X, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35:S224-S243. doi:10.1016/j.semcancer.2015.01.001
  • 52. Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics. 2022;14(9):1817. doi:10.3390/pharmaceutics14091817
  • 53. Mir SA, Padhiary A, Pati A, et al. Potential phytochemicals as microtubule-disrupting agents in cancer prevention. In: Recent Frontiers of Phytochemicals. Elsevier; 2023:225- 246. doi:10.1016/B978-0-443-19143-5.00020-7
  • 54. A. Razak SA, Mohd Gazzali A, Fisol FA, et al. Advances in Nanocarriers for Effective Delivery of Docetaxel in the reatment of Lung Cancer: An Overview. Cancers (Basel). 2021;13(3):400. doi:10.3390/cancers13030400
  • 55. Hu Y, Wu C, Zhu C, et al. Enhanced uptake and improved anti-tumor efficacy of doxorubicin loaded fibrin gel with liposomal apatinib in colorectal cancer. Int J Pharm. 2018;552(1-2):319-327. doi:10.1016/j.ijpharm.2018.10.013
  • 56. Sesarman A, Tefas L, Sylvester B, et al. Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv Transl Res. 2019;9(1):260-272. doi:10.1007/s13346-018-00598-8
  • 57. Verma V, Sharma S, Gaur K, Kumar N. Role of vinca alkaloids and their derivatives in cancer therapy. World J Adv Res Rev. 2022;16(3):794-800.
  • 58. Zhang T, Ma L, Wu P, et al. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non‑small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol Rep. Published online January 22, 2019. doi:10.3892/or.2019.6976
  • 59. Aborehab NM, Osama N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 2019;19(1):154. doi:10.1186/s12935-019-0868-0
  • 60. Mirazimi SMA, Dashti F, Tobeiha M, et al. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front Pharmacol. 2022;13. doi:10.3389/fphar.2022.860209
  • 61. Al-Halaseh LK, Al-Jawabri NA, Al-Btoush H, et al. In vivo investigation of the potential hypoglycemic activity of Pennisetum setaceum: Justification of the traditional use among Jordanians. Res J Pharm Technol. Published online July 29, 2022:3185-3189. doi:10.52711/0974-360X.2022.00533
  • 62. Khorsandi K, Kianmehr Z, Hosseinmardi Z, Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;20(1):18. doi:10.1186/s12935-020-1100-y
  • 63. Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell Int. 2021;21(1):349. doi:10.1186/s12935-021-02067-8
  • 64. Muhammad N, Steele R, Isbell TS, Philips N, Ray RB. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget. 2017;8(39):66226-66236. doi:10.18632/oncotarget.19887
  • 65. Maurya DK, Nandakumar N, Devasagayam TPA. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr. 2010;48(1):85-90. doi:10.3164/jcbn.11-004FR
  • 66. Al-Samydai A, Al Qaraleh M, Al Azzam KM, et al. Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy. Heliyon. 2023;9(6):e17267. doi:10.1016/j.heliyon.2023.e17267
  • 67. Russo E, Scicchitano F, Whalley BJ, et al. Hypericum perforatum : Pharmacokinetic, Mechanism of Action, Tolerability, and Clinical Drug-Drug Interactions. Phyther Res. 2014;28(5):643-655. doi:10.1002/ptr.5050
  • 68. Stojanovic G, Dordevic A, Smelcerovic A. Do Other Hypericum Species Have Medical Potential As St. John’s Wort (Hypericum perforatum)? Curr Med Chem. Wang Z, Dabrosin C, Yin X, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35:S224-S243. doi:10.1016/j.semcancer.2015.01.001
  • 72. Rezaeinejad F, Bardania H, Ghalamfarsa F, Hasanzadeh S, Jadidi-Niaragh F, Ghalamfarsa G. Proapoptotic effect of nanoliposomes loaded with hydroalcoholic extract of Hypericum perforatum L. in combination with curcumin on SW48 and SW1116 colorectal cancer cell lines. J Med Plants. 2022;21(82):28-42. doi:10.52547/jmp.21.82.28
  • 73. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari M. Antitumor Activity of PEGylated Nanoliposomes Containing Crocin in Mice Bearing C26 Colon Carcinoma. Planta Med. 2013;79(06):447-451. doi:10.1055/s-0032-1328363
  • 74. Abdullaev FI. Cancer Chemopreventive and Tumoricidal Properties of Saffron (Crocus sativus L.). Exp Biol Med. 2002;227(1):20-25. doi:10.1177/153537020222700104
  • 75. Tavakkol-Afshari J, Brook A, Mousavi SH. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol. 2008;46(11):3443-3447. doi:10.1016/j.fct.2008.08.018
  • 76. Prasad S, Tyagi AK. Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer. Gastroenterol Res Pract. 2015;2015:1-11. 99 doi:10.1155/2015/142979
  • 77. Saeedifar AM, Mosayebi G, Ghazavi A, Ganji A. Synergistic Evaluation of Ginger and Licorice Extracts in a Mouse Model of Colorectal Cancer. Nutr Cancer. 2021;73(6):1068-1078. doi:10.1080/01635581.2020.1784440
  • 78. Yavari M, Jaafari MR, Mirzavi F, Mosayebi G, Ghazavi A, Ganji A. Anti-tumor effects of PEGylated-nanoliposomes containing ginger extract in colorectal cancer-bearing mice. Iran J Basic Med Sci. 2022;25(7):890-896. doi:10.22038/IJBMS.2022.63870.14075
  • 79. Sefidkon F, Sagvand BT, Naderi M, Ghooshegir S. Comparison of anticancer effects of nanocapsules of Nasturtium officinalis (L.) R. Br. extract with methanolic extract and its fractions. Iran J Med Aromat Plants Res. 2013;29(1):35-50. doi:https://doi.org/10.22092/ijmapr.2013.2876
  • 80. Adlravan E, Sepideh jalilzadeh-Razin, Nejati K, et al. Potential activity of free and PLGA/PEG nanoencapsulated nasturtium officinale extract in inducing cytotoxicity and apoptosis in human lung carcinoma A549 cells. J Drug Deliv Sci Technol. 2021;61:102256. doi:10.1016/j.jddst.2020.102256
  • 81. Taghavinia F, Teymouri F, Farokhrouz F, et al. Nanoliposome-Loaded Phenolics from Nasturtium officinale Improves Health Parameters in a Colorectal Cancer Mouse Model. animals. 2022;12(24):3492. doi:10.3390/ani12243492
  • 82. Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 2019;125(23):4139-4147. doi:10.1002/cncr.32163
  • 83. Das A, Adhikari S, Deka D, et al. An Updated Review on the Role of Nanoformulated Phytochemicals in Colorectal Cancer. Medicina (B Aires). 2023;59(4):685. doi:10.3390/medicina59040685
  • 84. Maniewska J, Jeżewska D. Non-Steroidal Anti-Inflammatory Drugs in Colorectal Cancer Chemoprevention. Cancers (Basel). 2021;13(4):594. doi:10.3390/cancers13040594
  • 85. Khalil HE, Ibrahim H-IM, Ahmed EA, Emeka PM, Alhaider IA. Orientin, a Bio-Flavonoid from Trigonella hamosa L., Regulates COX-2/PGE-2 in A549 Cell Lines via miR-26b and miR-146a. Pharmaceuticals. 2022;15(2):154. doi:10.3390/ph15020154
  • 86. Sun P, Quan J-C, Wang S, et al. lncRNA-PACER upregulates COX-2 and PGE2 through the NF-κB pathway to promote the proliferation and invasion of colorectal-cancer cells. Gastroenterol Rep. 2021;9(3):257-268. doi:10.1093/gastro/goaa060
  • 87. Nkadimeng SM, Steinmann CM, Eloff JN. Anti-Inflammatory Effects of Four Psilocybin-Containing Magic Mushroom Water Extracts in vitro on 15-Lipoxygenase Activity and on Lipopolysaccharide-Induced Cyclooxygenase-2 and Inflammatory Cytokines in Human U937 Macrophage Cells. J Inflamm Res. 2021;Volume 14:3729-3738. doi:10.2147/JIR.S317182
  • 88. Yu J, Fang T, Yun C, Liu X, Cai X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front Mol Biosci. 2022;9. doi:10.3389/fmolb.2022.847835
  • 89. Fu J, Lv Y, Jia Q, et al. Purification and determination of antibody drugs in bio-samples by EGFR/cell membrane chromatography method. J Pharm Biomed Anal. 2022;217:114808. doi:10.1016/j.jpba.2022.114808
  • 90. Jahani V, Yazdani M, Badiee A, Jaafari MR, Arabi L. Liposomal celecoxib combined with dendritic cell therapy enhances antitumor efficacy in melanoma. J Control Release. 2023;354:453-464. doi:10.1016/j.jconrel.2023.01.034
  • 91. Raab WJ. CDX2 as a predictive biomarker of drug response in colon cancer. Published online 2021.
  • 92. Zalba S, Contreras AM, Haeri A, et al. Cetuximab￾oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J Control Release. 2015;210:26-38. doi:10.1016/j.jconrel.2015.05.271
  • 93. Brzozowska E, Deshmukh S. Integrin Alpha v Beta 6 (αvβ6) and Its Implications in Cancer Treatment. Int J Mol Sci. 2022;23(20):12346. doi:10.3390/ijms232012346
  • 94. Liang B, Shahbaz M, Wang Y, et al. Integrinβ6-Targeted Immunoliposomes Mediate Tumor-Specific Drug Delivery and Enhance Therapeutic Efficacy in Colon Carcinoma. Clin Cancer Res. 2015;21(5):1183-1195. doi:10.1158/1078-0432.CCR-14-1194
  • 95. Sompel K, Elango A, Smith AJ, Tennis MA. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol. 2021;12(1):32. doi:10.1007/s12672-021-00429-2
  • 96. Scavo MP, Cigliano A, Depalo N, et al. Frizzled-10 Extracellular Vesicles Plasma Concentration Is Associated with Tumoral Progression in Patients with Colorectal and Gastric Cancer. J Oncol. 2019;2019:1-12. doi:10.1155/2019/2715968
  • 97. Scavo MP, Depalo N, Rizzi F, et al. FZD10 Carried by Exosomes Sustains Cancer Cell Proliferation. Cells. 2019;8(8):777. doi:10.3390/cells8080777
  • 98. Ueno K, Hiura M, Suehiro Y, et al. Frizzled-7 as a Potential Therapeutic Target in Colorectal Cancer. Neoplasia. 2008;10(7):697-705. doi:10.1593/neo.08320
  • 99. Wong SCC, He CW, Chan CML, et al. Clinical Significance of Frizzled Homolog 3 Protein in Colorectal Cancer Patients. Katoh M, ed. PLoS One. 2013;8(11):e79481. doi:10.1371/journal.pone.0079481
  • 100. Zeng C-M, Chen Z, Fu L. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. Int J Mol Sci. 2018;19(5):1543. doi:10.3390/ijms19051543
  • 101. Nagayama S, Yamada E, Kohno Y, et al. Inverse correlation of the up‐regulation of FZD10 expression and the activation of β‐catenin in synchronous colorectal tumors. Cancer Sci. 2009;100(3):405-412. doi:10.1111/j.1349-7006.2008.01052.x
  • Scavo MP, Cutrignelli A, Depalo N, et al. Effectiveness of a Controlled 5-FU Delivery Based on FZD10 Antibody￾Conjugated Liposomes in Colorectal Cancer In vitro Models. Pharmaceutics. 2020;12(7):650. doi:10.3390/pharmaceutics12070650
  • 103. Hamaguchi T, Matsumura Y, Nakanishi Y, et al. Antitumor effect of MCC‐465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Sci. 2004;95(7):608-613. doi:10.1111/j.1349-7006.2004.tb02495.x
  • 104. Chen M, Yu Y, Jiang F, et al. Development of Cell-SELEX Technology and Its Application in Cancer Diagnosis and Therapy. Int J Mol Sci. 2016;17(12):2079. doi:10.3390/ijms17122079
  • 105. Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20(12):2424-2434. doi:10.1016/j.bios.2004.11.006
  • 106. Jin B, Guo Z, Chen Z, et al. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B. 2023;11(8):1609-1627. doi:10.1039/D2TB02579E
  • 107. Moosavian SA, Kesharwani P, Singh V, Sahebkar A. Aptamer-functionalized liposomes for targeted cancer therapy. In: Aptamers Engineered Nanocarriers for Cancer Therapy. Elsevier; 2023:141-172. doi:10.1016/B978-0-323-85881-6.00014-2
  • 108. Khodarahmi M, Abbasi H, Kouchak M, Mahdavinia M, Handali S, Rahbar N. Nanoencapsulation of aptamer￾functionalized 5-Fluorouracil liposomes using alginate/chitosan complex as a novel targeting strategy for colon-specific drug delivery. J Drug Deliv Sci Technol. 2022;71:103299. doi:10.1016/j.jddst.2022.103299
  • 109. Aravind A, Jeyamohan P, Nair R, et al. AS1411 aptamer tagged PLGA‐lecithin‐PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng. 2012;109(11):2920-2931. doi:10.1002/bit.24558
  • 110. Li X, Wu X, Yang H, Li L, Ye Z, Rao Y. A nuclear targeted Dox￾aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother. 2019;117:109072. doi:10.1016/j.biopha.2019.109072
  • 111. Tanzadehpanah H, Mahaki H, Manoochehri H, Soleimani M, Najafi R. AS1411 aptamer improves therapeutic efficacy of PEGylated nanoliposomes loaded with gefitinib in the mice bearing CT26 colon carcinoma. J Nanoparticle Res. 2022;24(12):252. doi:10.1007/s11051-022-05630-0
  • 112. Zhao Y, Xu J, Le VM, et al. EpCAM Aptamer-Functionalized Cationic Liposome-Based Nanoparticles Loaded with miR-139-5p for Targeted Therapy in Colorectal Cancer. Mol Pharm. 2019;16(11):4696-4710. doi:10.1021/acs.molpharmaceut.9b00867
  • 113. Song M, Yin Y, Zhang J, et al. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell. 2014;5(11):851-861. doi:10.1007/s13238-014-0093-5
  • 114. Mashreghi M, Zamani P, Moosavian SA, Jaafari MR. Anti￾Epcam Aptamer (Syl3c)-Functionalized Liposome for Targeted Delivery Of Doxorubicin: In Vitro And In Vivo Antitumor Studies in Mice Bearing C26 Colon Carcinoma. Nanoscale Res Lett. 2020;15(1):101. doi:10.1186/s11671-020-03334-9
  • 115. Kono K, Ozawa T, Yoshida T, et al. Highly temperature￾sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials. 2010;31(27):7096-7105. doi:10.1016/j.biomaterials.2010.05.045
  • 116. Simões S. On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev. 2004;56(7):947-965. doi:10.1016/j.addr.2003.10.038
  • 117. Leung SJ, Romanowski M. Light-Activated Content Release from Liposomes. Theranostics. 2012;2(10):1020-1036. doi:10.7150/thno.4847
  • 118. Nobuto H, Sugita T, Kubo T, et al. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer. 2004;109(4):627-635. doi:10.1002/ijc.20035
  • 119. Pradhan P, Giri J, Rieken F, et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release. 2010;142(1):108-121. doi:10.1016/j.jconrel.2009.10.002
  • 120. Zangabad PS, Mirkiani S, Shahsavari S, et al. Stimulus￾responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev. 2018;7(1):95-122. doi:10.1515/ntrev-2017-0154
  • 121. Yu C, Li L, Hu P, et al. Recent Advances in Stimulus‐Responsive Nanocarriers for Gene Therapy. Adv Sci. 2021;8(14):2100540. doi:10.1002/advs.202100540
  • 122. Lorente C, Cabeza L, Clares B, et al. Formulation and in vitro evaluation of magnetoliposomes as a potential nanotool in colorectal cancer therapy. Colloids Surfaces B Biointerfaces. 2018;171:553-565. doi:10.1016/j.colsurfb.2018.07.070
  • 123. Hardiansyah A, Huang L-Y, Yang M-C, et al. Magnetic liposomes for colorectal cancer cells therapy by high￾frequency magnetic field treatment. Nanoscale Res Lett. 2014;9(1):497. doi:10.1186/1556-276X-9-497
  • 124. Kuo C-Y, Liu T-Y, Chan T-Y, et al. Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids Surfaces B Biointerfaces. 2016;140:567-573. doi:10.1016/j.colsurfb.2015.11.008
  • 125. Toro-Córdova A, Llaguno-Munive M, Jurado R, Garcia￾Lopez P. The Therapeutic Potential of Chemo/Thermotherapy with Magnetoliposomes for Cancer Treatment. Pharmaceutics. 2022;14(11):2443. doi:10.3390/pharmaceutics14112443
  • 126. Clares B, Biedma-Ortiz RA, Sáez-Fernández E, et al. Nano￾engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. Eur J Pharm Biopharm. 2013;85(3):329-338. doi:10.1016/j.ejpb.2013.01.028
  • 127. Karanth H, Murthy RSR. pH-Sensitive liposomes-principle and application in cancer therapy. J Pharm Pharmacol. 2007;59(4):469-483. doi:10.1211/jpp.59.4.0001
  • 128. Paulmurugan R. Introduction to cancer biology. In: Molecular Imaging Probes for Cancer Research. World Scientific Publishing Co. Pte. Ltd.; 2012:3-27.
  • 129. Nunes SS, Miranda SEM, de Oliveira Silva J, et al. pH￾responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. Biomed Pharmacother. 2021;144:112317. doi:10.1016/j.biopha.2021.112317
  • 130. Udofot O, Affram K, Israel B, Agyare E. Cytotoxicity of 5-fluorouracil-loaded pH-sensitive liposomal nanoparticles in colorectal cancer cell lines. Integr Cancer Sci Ther. 2015;2(5). doi:10.15761/ICST.1000150
  • 131. Wang G, Yang Y, Yi D, et al. Eudragit S100 prepared pH￾responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. J Liposome Res. 2022;32(3):250-264. doi:10.1080/08982104.2021.1999974
  • 132. Iranpour S, Bahrami AR, Sh. Saljooghi A, Matin MM. Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev. 2021;442:213949. doi:10.1016/j.ccr.2021.213949
  • 133. Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics. 2022;14(6):1213. doi:10.3390/pharmaceutics14061213
  • 134. Murphy N, Ward HA, Jenab M, et al. Heterogeneity of Colorectal Cancer Risk Factors by Anatomical Subsite in 10 European Countries: A Multinational Cohort Study. Clin Gastroenterol Hepatol. 2019;17(7):1323-1331.e6. doi:10.1016/j.cgh.2018.07.030
  • 135. Berry CC, Wells S, Charles S, Curtis ASG. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003;24(25):4551-4557. doi:10.1016/S0142-9612(03)00237-0
There are 146 citations in total.

Details

Primary Language English
Subjects Nanoelectronics
Journal Section Reviews
Authors

Leila Rezaee Uonaki 0000-0003-4160-7872

Farideh Ghalamfarsa 0000-0002-0127-1326

Yousef Fazli 0000-0002-8003-9233

Ramin Jannesar 0000-0002-4928-7239

Ghasem Ghalamfarsa 0000-0002-5554-6268

Ahmet Hacımüftüoğlu 0000-0002-9658-3313

Azizeh Shadidizaji 0000-0002-1996-7823

Kağan Tolga Cinisli 0000-0003-3909-9637

Mobina Shahsafi 0009-0007-2652-1487

Publication Date December 20, 2024
Submission Date October 21, 2024
Acceptance Date November 28, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite