Research Article
BibTex RIS Cite
Year 2021, , 60 - 73, 01.06.2021
https://doi.org/10.46572/naturengs.858208

Abstract

References

  • Referans1 Zhang, J., 2008, Hydrogen production by biomass gasification in supercritical water, Energeia, 19, 1-5.
  • Referans2 Kaneko, H., Miura, T., Ishihara, H., Taku, S., Yokoyama, T., Nakajima, H., Tamaura, Y., 2007, Reactive ceramics of CeO2-MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy. Energy, 32:656-663.
  • Referans3 Fan, M.Q., Liu, S.S., Zhang, Y., Sun, L.X., Xu, F., 2010, Superior hydrogen storage properties of MgH2-10 wt% TiC composite., Energy, 35:3417-3421.
  • Referans4 Yolcular, S., Karaoglu, S., 2017, Activation of Al powder with NaCl-assisted milling for hydrogen generation, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(18):1919-1927.
  • Referans5 Wang, M., Ouyang, L., Zeng, M., Liu, J., Peng, C., Shao, H., Zhu, M., 2019, Magnesium borohydride hydrolysis with kinetics controlled by ammoniate formation, International Journal of Hydrogen Energy, 44: 7392-7401.
  • Referans6 Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P.C. ve Logan, B.E., 2009, Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis, International Journal of Hydrogen Energy, 34:6201-6210.
  • Referans7 Barbir, F., Ulgiati, S., 2008, Sustainable Energy Production and Consumption, Springer, Dordrecht, Holland, 372.
  • Referans8 Yu, S.H., Uan, J.Y., Hsu, T.L., 2012, Effects of concentrations of NaCl and organic acid on generation of hydrogen from magnesium metal scrap, International Journal of Hydrogen Energy, 37:3033-3340.
  • Referans9 Youssef, E.A., Nakhla, G. ve Charpentier, P.A., 2011, Oleic acid gasification over supported metal catalysts in supercritical water: hydrogen production and product distribution, International Journal of Hydrogen Energy, 36:4830-4842.
  • Referans10 Uan, J.Y., Yu, S.H., Lin, M.C., Chen, L.F., Lin, H.I., 2009, Evolution of hydrogen from magnesium alloy scraps in citric acid-added seawater without catalyst, International Journal of Hydrogen Energy, 34:6137-6142.
  • Referans11 Sun, Q., Zou, M., Guo, X., Yang, R., Huang, H., Huang, P., He, X., 2015, A study of hydrogen generation by reaction of an activated Mg–CoCl2 (magnesium–cobalt chloride) composite with pure water for portable applications, Energy, 79, 310-314.
  • Referans12 Ouyang, L., Ma, M., Huang, M., Duan, R., Wang, H., Sun, L., Zhu, M., 2015, Enhanced Hydrogen Generation Properties of MgH2-Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer, Energies, 8:4232-4257.
  • Referans13 Tan, Z.H., Ouyang, L.Z., Huang, J.M., Liu, J.W., Wang, H., Shao, H.Y., Zhu, M., 2019, Hydrogen generation via hydrolysis of Mg2Si, Journal of Alloys and Compounds, 770:108-115.
  • Referans14 Liu, Y., Wang, X., Dong, Z., Liu, H., Li, S., Ge, H., Yan, M., 2013, Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3, Energy, 53:147-152.
  • Referans15 Weng, B., Wu, Z., Li, Z., Yang, H., 2012, Hydrogen generation from hydrolysis of NH3BH3/MH (M = Li, Na) binary hydrides, International Journal of Hydrogen Energy, 37:5152-5160.
  • Referans16 Singh, P.K., Das, T., 2017, Generation of hydrogen from NaBH4 solution using metal-boride (CoB, FeB, NiB) catalysts, International Journal of Hydrogen Energy, 42:29360-29369.
  • Referans17 Leng, H., Xu, J., Jiang, J., Xiao, H., Li, Q., Chou, K.C., 2015, Improved dehydrogenation properties of Mg(BH4)2·2NH3 combined with LiAlH4, International Journal of Hydrogen Energy, 40:8362-8367.
  • Referans18 Figen, A.K., Coskuner, B., 2015, Hydrogen production by the hydrolysis of milled waste magnesium scraps in nickel chloride solutions and nickel chloride added in Marmara Sea and Aegean Sea Water, International Journal of Hydrogen Energy, 40(46):16169-16177.
  • Referans19 Figen, A.K., Coskuner, B., Piskin, S., 2015, Hydrogen generation from waste Mg based material in various saline solutions (NiCl2, CoCl2, CuCl2, FeCl3, MnCl2), International Journal of Hydrogen Energy, 40:7483-7489.
  • Referans20 Oz, C., Filiz, B.C., Figen, A.K., 2017, The effect of vinegar- acetic acid solution on the hydrogen generation performance of mechanochemically modified magnesium (Mg) granules, Energy, 127:328-334.
  • Referans21 Grosjean, M.H., Roué, L., 2006a, Hydrolysis of Mg-salt and MgH2-salt mixtures prepared by ball milling for hydrogen production, Journal of Alloys and Compounds, 416, 296-302.
  • Referans22 Ho, Y.S., 2013, Hydrogen Generation from Magnesium Hydride By Using Organic Acid, MSc Thesis, University of Wisconsin, Milwaukee.
  • Referans23 PubChem, “Magnesium Acetate”, https://pubchem.ncbi.nlm.nih.gov/compound/8896, (Date of Access: 08.01.2021).
  • Referans24 Pubchem, “Magnesium Citrate”, https://pubchem.ncbi.nlm.nih.gov/compound/6099959 (Date of Access: 08.12.2021).
  • Referans25 Uda, M., Okuyama, H., Suzuki, T.S., Sakka, Y., 2012, Hydrogen generation from water using Mg nanopowder produced by arc plasma method, Science and Technology of Advanced Materials, 13:1-7.
  • Referans26 Grosjean, M.H., Zidoune, M., Roué, L., Huot, J.Y., 2006b, Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials, International Journal of Hydrogen Energy, 31:109-119.
  • Referans27 Aytaş, B.E., 2019, The use of Mg-metal chloride composites in hydrogen production, MSc Thesis, Ege University Graduate School of Applied and Natural Science, İzmir.
  • Referans28 Wang, S, Sun, L.X., Xu, F., Jiao, C.L., Zhang, J., Zhou, H.Y., Huang, F.L., 2012, Hydrolysis reaction of ball-milled Mg-metal chlorides composite for hydrogen generation for fuel cells, International Journal of Hydrogen Energy, 37:6771-6775.
  • Referans29 Tian, M., Shang, C., 2019, Mg-based composites for enhanced hydrogen storage performance, International Journal of Hydrogen Energy, 44:338-342.
  • Referans30 Cho, C., Wang, K., Uan, J., 2005, Evaluation of a new hydrogen generating system: Ni-rich magnesium alloy catalyzed by platinum wire in sodium chloride solution, Matererials Transactions, 46:2704-2708.
  • Referans31 Zhao, Z.W., Chen, X.Y., Hao, M.M., 2011, Hydrogen generation by splitting with Al-Ca alloy, Energy, 36:2782-2787.

The Usage of Mg - Metal Chlorides in Hydrogen Generation

Year 2021, , 60 - 73, 01.06.2021
https://doi.org/10.46572/naturengs.858208

Abstract

The reaction of metals with water is one of the hydrogen generation methods. Mg stands out as a viable alternative when compared to other metals for producing hydrogen. However, the emergence of Mg(OH)2, which interrupts hydrogen production in its reaction with water, has led to the search for new methods to improve the hydrogen production process. For this reason, in our study, chloride salts (CoCl2 and AlCl3) have been used to improve hydrogen generation. The composites have been prepared with the addition of different chlorides (AlCl3 and CoCl2) into Mg with ball milling. AlCl3 and CoCl2 have been used separately and together while forming Mg metal composite powder. Powder mixtures have been grounded by a planetary ball mill at different times (2 and 4 hours). Deformations, which are thought to contribute positively to the reaction, have been obtained on the metal surface with ball milling. The microscopic images of the powder mixtures have been analyzed by SEM. In addition, distilled water, acetic acid and citric acid have been used in our study to observe the effects of hydrogen production. When distilled water has been used with powder mixtures in the hydrogen generation experiments, a minimal amount of hydrogen gas output has been observed. It has been observed that the use of acetic acid or citric acid solutions significantly enhances the amount of hydrogen formed. 4 hours milled Mg- 10wt% CoCl2 composite has the best hydrolysis properties for all experiments with its 138 ml of hydrogen generation at 30oC in 30 ml, 2 M citric acid solution.

References

  • Referans1 Zhang, J., 2008, Hydrogen production by biomass gasification in supercritical water, Energeia, 19, 1-5.
  • Referans2 Kaneko, H., Miura, T., Ishihara, H., Taku, S., Yokoyama, T., Nakajima, H., Tamaura, Y., 2007, Reactive ceramics of CeO2-MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy. Energy, 32:656-663.
  • Referans3 Fan, M.Q., Liu, S.S., Zhang, Y., Sun, L.X., Xu, F., 2010, Superior hydrogen storage properties of MgH2-10 wt% TiC composite., Energy, 35:3417-3421.
  • Referans4 Yolcular, S., Karaoglu, S., 2017, Activation of Al powder with NaCl-assisted milling for hydrogen generation, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(18):1919-1927.
  • Referans5 Wang, M., Ouyang, L., Zeng, M., Liu, J., Peng, C., Shao, H., Zhu, M., 2019, Magnesium borohydride hydrolysis with kinetics controlled by ammoniate formation, International Journal of Hydrogen Energy, 44: 7392-7401.
  • Referans6 Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P.C. ve Logan, B.E., 2009, Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis, International Journal of Hydrogen Energy, 34:6201-6210.
  • Referans7 Barbir, F., Ulgiati, S., 2008, Sustainable Energy Production and Consumption, Springer, Dordrecht, Holland, 372.
  • Referans8 Yu, S.H., Uan, J.Y., Hsu, T.L., 2012, Effects of concentrations of NaCl and organic acid on generation of hydrogen from magnesium metal scrap, International Journal of Hydrogen Energy, 37:3033-3340.
  • Referans9 Youssef, E.A., Nakhla, G. ve Charpentier, P.A., 2011, Oleic acid gasification over supported metal catalysts in supercritical water: hydrogen production and product distribution, International Journal of Hydrogen Energy, 36:4830-4842.
  • Referans10 Uan, J.Y., Yu, S.H., Lin, M.C., Chen, L.F., Lin, H.I., 2009, Evolution of hydrogen from magnesium alloy scraps in citric acid-added seawater without catalyst, International Journal of Hydrogen Energy, 34:6137-6142.
  • Referans11 Sun, Q., Zou, M., Guo, X., Yang, R., Huang, H., Huang, P., He, X., 2015, A study of hydrogen generation by reaction of an activated Mg–CoCl2 (magnesium–cobalt chloride) composite with pure water for portable applications, Energy, 79, 310-314.
  • Referans12 Ouyang, L., Ma, M., Huang, M., Duan, R., Wang, H., Sun, L., Zhu, M., 2015, Enhanced Hydrogen Generation Properties of MgH2-Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer, Energies, 8:4232-4257.
  • Referans13 Tan, Z.H., Ouyang, L.Z., Huang, J.M., Liu, J.W., Wang, H., Shao, H.Y., Zhu, M., 2019, Hydrogen generation via hydrolysis of Mg2Si, Journal of Alloys and Compounds, 770:108-115.
  • Referans14 Liu, Y., Wang, X., Dong, Z., Liu, H., Li, S., Ge, H., Yan, M., 2013, Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3, Energy, 53:147-152.
  • Referans15 Weng, B., Wu, Z., Li, Z., Yang, H., 2012, Hydrogen generation from hydrolysis of NH3BH3/MH (M = Li, Na) binary hydrides, International Journal of Hydrogen Energy, 37:5152-5160.
  • Referans16 Singh, P.K., Das, T., 2017, Generation of hydrogen from NaBH4 solution using metal-boride (CoB, FeB, NiB) catalysts, International Journal of Hydrogen Energy, 42:29360-29369.
  • Referans17 Leng, H., Xu, J., Jiang, J., Xiao, H., Li, Q., Chou, K.C., 2015, Improved dehydrogenation properties of Mg(BH4)2·2NH3 combined with LiAlH4, International Journal of Hydrogen Energy, 40:8362-8367.
  • Referans18 Figen, A.K., Coskuner, B., 2015, Hydrogen production by the hydrolysis of milled waste magnesium scraps in nickel chloride solutions and nickel chloride added in Marmara Sea and Aegean Sea Water, International Journal of Hydrogen Energy, 40(46):16169-16177.
  • Referans19 Figen, A.K., Coskuner, B., Piskin, S., 2015, Hydrogen generation from waste Mg based material in various saline solutions (NiCl2, CoCl2, CuCl2, FeCl3, MnCl2), International Journal of Hydrogen Energy, 40:7483-7489.
  • Referans20 Oz, C., Filiz, B.C., Figen, A.K., 2017, The effect of vinegar- acetic acid solution on the hydrogen generation performance of mechanochemically modified magnesium (Mg) granules, Energy, 127:328-334.
  • Referans21 Grosjean, M.H., Roué, L., 2006a, Hydrolysis of Mg-salt and MgH2-salt mixtures prepared by ball milling for hydrogen production, Journal of Alloys and Compounds, 416, 296-302.
  • Referans22 Ho, Y.S., 2013, Hydrogen Generation from Magnesium Hydride By Using Organic Acid, MSc Thesis, University of Wisconsin, Milwaukee.
  • Referans23 PubChem, “Magnesium Acetate”, https://pubchem.ncbi.nlm.nih.gov/compound/8896, (Date of Access: 08.01.2021).
  • Referans24 Pubchem, “Magnesium Citrate”, https://pubchem.ncbi.nlm.nih.gov/compound/6099959 (Date of Access: 08.12.2021).
  • Referans25 Uda, M., Okuyama, H., Suzuki, T.S., Sakka, Y., 2012, Hydrogen generation from water using Mg nanopowder produced by arc plasma method, Science and Technology of Advanced Materials, 13:1-7.
  • Referans26 Grosjean, M.H., Zidoune, M., Roué, L., Huot, J.Y., 2006b, Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials, International Journal of Hydrogen Energy, 31:109-119.
  • Referans27 Aytaş, B.E., 2019, The use of Mg-metal chloride composites in hydrogen production, MSc Thesis, Ege University Graduate School of Applied and Natural Science, İzmir.
  • Referans28 Wang, S, Sun, L.X., Xu, F., Jiao, C.L., Zhang, J., Zhou, H.Y., Huang, F.L., 2012, Hydrolysis reaction of ball-milled Mg-metal chlorides composite for hydrogen generation for fuel cells, International Journal of Hydrogen Energy, 37:6771-6775.
  • Referans29 Tian, M., Shang, C., 2019, Mg-based composites for enhanced hydrogen storage performance, International Journal of Hydrogen Energy, 44:338-342.
  • Referans30 Cho, C., Wang, K., Uan, J., 2005, Evaluation of a new hydrogen generating system: Ni-rich magnesium alloy catalyzed by platinum wire in sodium chloride solution, Matererials Transactions, 46:2704-2708.
  • Referans31 Zhao, Z.W., Chen, X.Y., Hao, M.M., 2011, Hydrogen generation by splitting with Al-Ca alloy, Energy, 36:2782-2787.
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Begüm Esra Aytaş 0000-0003-3528-208X

Sevim Yolcular Karaoğlu 0000-0003-0954-6889

Publication Date June 1, 2021
Submission Date January 11, 2021
Acceptance Date May 9, 2021
Published in Issue Year 2021

Cite

APA Aytaş, B. E., & Yolcular Karaoğlu, S. (2021). The Usage of Mg - Metal Chlorides in Hydrogen Generation. NATURENGS, 2(1), 60-73. https://doi.org/10.46572/naturengs.858208