Review
BibTex RIS Cite

Microfluidic Technology and Biomedical Field

Year 2021, Volume: 2 Issue: 1, 74 - 87, 01.06.2021
https://doi.org/10.46572/naturengs.883706

Abstract

It is seen that the development of microfluidic laboratories working passively on chips has increased over the years. The field of microfluidics includes the use of microstructured devices, which typically have micrometer sizes and allow precise processing of low volumes. Nano fields are the main fields of nanotechnology, which includes science fields such as earth science, organic chemistry, molecular biology, semiconductor physics, micromachinery where the control of the atomic and molecular unit will take place. New techniques are needed to meet existing needs for the development phase. Micro and nano-volume multi-stage systems through micrometer-sized channels and microfluidics, which are many applied science branches, have become widespread in engineering. The circulation of fluids in systems through micrometer-sized channels examines factors that can affect the behavior of fluids, such as surface tension, energy use, and fluid resistance in the system. Microfluidic devices and systems have a variety of functions to replace routine biomedical analysis and diagnostics. It emphasizes a higher level of system integration with advanced automation, control and High Efficiency processing potential while consuming small amounts of sample and reagent in less time. Thanks to miniaturization, better diagnostic speed, cost effectiveness, ergonomics and sensitivity can be achieved.
This article describes microfluidic technology, including system components. Literature review will be made in studies completed or ongoing world wide. The mechanisms, applications and recent developments related to microfluidic techniques are listed. Presents current research topics and possible future research in the biomedical field in microfluidic technology.

References

  • [1] Saggiomo, V. and Velders, A. H. (2015). Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2, 1–5.
  • [2] Whitesides, G. (2006). The origins and the future of microfluidics. Nature 442, 368–373.
  • [3] Sackmann, E., Fulton, A. and Beebe, D. (2014). The present and future role of microfluidics in biomedical research. Nature 507, 181-189.
  • [4] Luo, T., Fan, L., Zhu, R., Sun, D. (2019). Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications. Micromachines 10(2): 104.
  • [5] Suwannaphan T, Srituravanich W, Sailasuta A, Piyaviriyakul P, Bhanpattanakul S, Jeamsaksiri W, Sripumkhai W, Pimpin A. (2019). Investigation of Leukocyte Viability and Damage in Spiral Microchannel and Contraction-Expansion Array. Micromachines. 10(11): 772.
  • [6] Young, E. W., Beebe, D. J. (2010). Fundamentals of microfluidic cell culture in controlled microenvironments. Chemical Society Reviews, 39(3): 1036-1048.
  • [7] Baydoun, M., Treizeibré, A., Follet, J., Vanneste, S. B., Creusy, C., Dercourt, L., Delaire, B., Mouray, A., Viscogliosi, E., Certad, G., Senez, V. ( 2020). Micromachines. 11(2): 150.
  • [8] Luo, Y., Zhao, J., He, C., Lu, Z., Lu, X. (2020). Miniaturized Platform for Individual Coral Polyps Culture and Monitoring. Micromachines. 11(2): 127.
  • [9] Williams, M. J., Lee, N. K., Mylott, J.A., Mazzola, N., Ahmed, A., Abhyankar, V. V. (2019). A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. Micromachines. 10(6): 360.
  • [10] Horiuchi, T., Miura, T., Iwasaki, Y., Seyama, M., Inoue, S., Takahashi, J. İ., Haga, T., Tamechika, E. (2012). Passive Fluidic Chip Composed of Integrated Vertical Capillary Tubes Developed for On-Site SPR Immunoassay Analysis Targeting Real Samples. Sensors. 12(6): 7095-7108.
  • [11] Fu, J., Wu, L., Qiao, Y., Tu, J., Lu, Z. (2020). Microfluidic Systems Applied in Solid-State Nanopore Sensors. Micromachines. 11(3): 332.
  • [12] Chokkalingam, V., Tel, J., Wimmers, F., Liu, X., Semenov, S., Thiele, J., Figdor, C. G. and Huck, W. T. (2013). Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics, Lab Chip, 13, 4740-4744.
  • [13] Huh, D., Hamilton, G. A., and Ingber, D. E. (2011). From 3D cell culture to organs-on-chips. Trends in cell biology, 21(12): 745-754.
  • [14] Wang, A., Koh, D., Schneider, P., Breloff, E., Oh, K. W. (2019). A Compact, Syringe-Assisted, Vacuum-Driven Micropumping Device. Micromachines. 10(8): 543.
  • [15] Xu, Z. R., Yang, C. G., Liu, C. H., Zhou, Z., Fang, J. and Wang, J. H. (2010). An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture, Talanta, 80(3): 1088-1093.
  • [16] Park, J. Y., Kim, S. K., Woo, D. H., Lee, E. J., Kim, J. H. and Lee, S. H. (2009). Differentiation of Neural Progenitor Cells in a Microfluidic Chip‐Generated Cytokine Gradient, Stem Cells, 27(11): 2646-2654.
  • [17] Paguirigan, A. L., and Beebe, D. J. (2009). From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures, Integr. Biol. 1(2): 182-195.
  • [18] Folch, A. and Toner, M. (2008). Cellular micro models on biocompatible materials, Biotechnology Programs, skin. 14(3): 388-392.
  • [19] Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y. and Ingber, D. E. (2010). Reconstruction of lung function at the organ level on a chip, Science, 328(5986): 1662-1668.
  • [20] Esch, E. W., Bahinski, A. and Huh, D. (2015). Organs on chips at the borders of drug discovery, Nature Reviews Drug Discovery, skin. 14(4): 248-260.
  • [21] Hou, X., Zhang, Y. S., Trujillo-de Santiago, G., Alvarez, M. M., Ribas, J., Jonas, S. J. and Khademhosseini, A. (2017). Interplay between materials and microfluidics. Nature Reviews Materials, 2(5): 1-15.
  • [22] Bhattacharjee, N., Urrios, A., Kang, S., and Folch, A. (2016). The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 16(10): 1720-1742.
  • [23] Trantidou, T., Elani, Y., Parsons, E., and Ces, O. (2017). Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsystems & nanoengineering, 3(1): 1-9.
  • [24] Mukhopadhyay, S., Roy, S. S., Mathur, A., Tweedie, M. and McLaughlin, J. A., (2010). Experimental study on capillary flow through polymer microchannel bends for microfluidic applications, Micromech. Microeng. 20(5): 055018.
  • [25] Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13): 2376-2396.
  • [26] Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L and Weitz, D. A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15): 5646-5683.
  • [27] Mac Connell, A. B., Price, A. K. and Paegel, B. M. (2017). An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS combinatorial science, 19(3): 181-192.
  • [28] Wooseok, J., Han, J., Choi, J-W. and Ahn, C. H. (2015). Pointof-care testing (POCT) diagnostic systems using microfluidic lab-on-achip technologies, Microelectronic Engineering Journal, 132, 46-57.
  • [29] Cardoso, V. F., Catarino, S. O., Lanceros-Mendez, S., & Minas, G. (2011). Lab-on-a-chip using acoustic streaming for mixing and pumping fluids. In 1st Portuguese Biomedical Engineering Meeting (1-4). IEEE.
  • [30] Makhijani, V. B., Reich, A. J., Puntambekar, A., Hong, C. and Ahn, C. (2001). Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis, Tech Connect Briefs, 1, 266-269.
  • [31] Krishna, K. S., Yuehao, L. i., Shuning, L. i. and Challa, S., Kumar, S. R. (2013). Labon-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications, Advanced Drug Delivery Reviews Journal, 65(11): 1470-1495.
  • [32] Volpatti, L. R. and Yetisen, A. K. (2014). Commercialization of microfluidic devices, Trends Biotechnol., 32(7): 347-350.
  • [33] Luo, G., Du, L., Wang, Y., and Wang, K. (2019). Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano-and micro-materials. Particuology, 45, 1-19.
  • [34] Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L. and Weitz, D. A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15): 5646-5683.
  • [35] Auerswald, J., Berchtold, S., Diserens, J. M., Gijs, M. A., Jin, Y. H., Knapp, H. F. and Voirin, G. (2009). Lab-on-a-chip for Analysis and Diagnostics: Application to Multiplexed Detection of Antibiotics in Milk. In Nanosystems design and technology (117-142). Springer, Boston, MA.
  • [36] Shi, H., Nie, K., Dong, B., Long, M., Xu, H. and Liu, Z. (2019). Recent progress of microfluidic reactors for biomedical applications. Chemical Engineering Journal, 361, 635-650.
  • [37] Kalaitzakis, M., Kritsotakis, V., Grangeat, P., Paulus, C., Gerfault, L., Perez, M., Reina, C., Potamias, G., Tsiknakis, M., Kafetzopoulos, D. and Binz, P. A. (2008). Proteomic based identification of cancer biomarkers: The LOCCANDIA integrated platform, Proceedings of 8th IEEE International Conference on BioInformatics and BioEngineering, Athens, 1-7.
  • [38] Ziober, B. L., Mauk, M. G., Falls, E. M., Chen, Z., Ziober A.F. and Haim H. B. (2008). Lab‐on‐a‐chip for oral cancer screening and diagnosis, Head & Neck Journal. 30(1): 111-121.
  • [39] Sabo W. D. and Nor A. Y. (2011). Microfluidics-based lab-on-chip systems in DNA-based biosensing: An overview, Sensors Journal, 11(6): 5754-5768.
  • [40] Aryasomayajula, A., Bayat, P., Rezai, P. and Selvaganapathy, P. R. (2017). Microfluidic Devices and Their Applications. In Springer Handbook of Nanotechnology (487-536). Springer, Berlin, Heidelberg.
  • [41] Xu, Z. R., Yang, C. G., Liu, C. H., Zhou, Z., Fang, J. and Wang, J. H. (2010). An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture, Talanta, 80(3): 1088-1093.
  • [42] Young, E. W. and Beebe, D. J. (2010). Fundamentals of microfluidic cell culture in controlled microenvironments, Chem. Soc. Rev., 39, 1036-1048.
  • [43] Bruijns, B., Van Asten, A., Tiggelaar, R., and Gardeniers, H. (2016). Microfluidic devices for forensic DNA analysis: A review. Biosensors, 6(3): 41.
  • [44] Taylor, B. J., Howell, A., Martin, K. A., Manage, D. P., Gordy, W., Campbell, S. D., ... & Atrazhev, A. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria journal, 13(1): 179.
  • [45] Long, C., Xu, H., Shen Q, et al. (2020). Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol.126:108961
  • [46] Ai, T., Yang, Z., Hou, H, et al. (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2): 41-45.
  • [47] Website. Chinese clinical guidance for COVID-19 pneumonia diagnosis and treatment, (2021). https://www.acc.org/latest-in-cardiology/articles/2020/03/17/11/22/chinese-clinical-guidance-for-covid-19-pneumonia-diagnosis-and-treatment
Year 2021, Volume: 2 Issue: 1, 74 - 87, 01.06.2021
https://doi.org/10.46572/naturengs.883706

Abstract

References

  • [1] Saggiomo, V. and Velders, A. H. (2015). Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2, 1–5.
  • [2] Whitesides, G. (2006). The origins and the future of microfluidics. Nature 442, 368–373.
  • [3] Sackmann, E., Fulton, A. and Beebe, D. (2014). The present and future role of microfluidics in biomedical research. Nature 507, 181-189.
  • [4] Luo, T., Fan, L., Zhu, R., Sun, D. (2019). Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications. Micromachines 10(2): 104.
  • [5] Suwannaphan T, Srituravanich W, Sailasuta A, Piyaviriyakul P, Bhanpattanakul S, Jeamsaksiri W, Sripumkhai W, Pimpin A. (2019). Investigation of Leukocyte Viability and Damage in Spiral Microchannel and Contraction-Expansion Array. Micromachines. 10(11): 772.
  • [6] Young, E. W., Beebe, D. J. (2010). Fundamentals of microfluidic cell culture in controlled microenvironments. Chemical Society Reviews, 39(3): 1036-1048.
  • [7] Baydoun, M., Treizeibré, A., Follet, J., Vanneste, S. B., Creusy, C., Dercourt, L., Delaire, B., Mouray, A., Viscogliosi, E., Certad, G., Senez, V. ( 2020). Micromachines. 11(2): 150.
  • [8] Luo, Y., Zhao, J., He, C., Lu, Z., Lu, X. (2020). Miniaturized Platform for Individual Coral Polyps Culture and Monitoring. Micromachines. 11(2): 127.
  • [9] Williams, M. J., Lee, N. K., Mylott, J.A., Mazzola, N., Ahmed, A., Abhyankar, V. V. (2019). A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. Micromachines. 10(6): 360.
  • [10] Horiuchi, T., Miura, T., Iwasaki, Y., Seyama, M., Inoue, S., Takahashi, J. İ., Haga, T., Tamechika, E. (2012). Passive Fluidic Chip Composed of Integrated Vertical Capillary Tubes Developed for On-Site SPR Immunoassay Analysis Targeting Real Samples. Sensors. 12(6): 7095-7108.
  • [11] Fu, J., Wu, L., Qiao, Y., Tu, J., Lu, Z. (2020). Microfluidic Systems Applied in Solid-State Nanopore Sensors. Micromachines. 11(3): 332.
  • [12] Chokkalingam, V., Tel, J., Wimmers, F., Liu, X., Semenov, S., Thiele, J., Figdor, C. G. and Huck, W. T. (2013). Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics, Lab Chip, 13, 4740-4744.
  • [13] Huh, D., Hamilton, G. A., and Ingber, D. E. (2011). From 3D cell culture to organs-on-chips. Trends in cell biology, 21(12): 745-754.
  • [14] Wang, A., Koh, D., Schneider, P., Breloff, E., Oh, K. W. (2019). A Compact, Syringe-Assisted, Vacuum-Driven Micropumping Device. Micromachines. 10(8): 543.
  • [15] Xu, Z. R., Yang, C. G., Liu, C. H., Zhou, Z., Fang, J. and Wang, J. H. (2010). An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture, Talanta, 80(3): 1088-1093.
  • [16] Park, J. Y., Kim, S. K., Woo, D. H., Lee, E. J., Kim, J. H. and Lee, S. H. (2009). Differentiation of Neural Progenitor Cells in a Microfluidic Chip‐Generated Cytokine Gradient, Stem Cells, 27(11): 2646-2654.
  • [17] Paguirigan, A. L., and Beebe, D. J. (2009). From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures, Integr. Biol. 1(2): 182-195.
  • [18] Folch, A. and Toner, M. (2008). Cellular micro models on biocompatible materials, Biotechnology Programs, skin. 14(3): 388-392.
  • [19] Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y. and Ingber, D. E. (2010). Reconstruction of lung function at the organ level on a chip, Science, 328(5986): 1662-1668.
  • [20] Esch, E. W., Bahinski, A. and Huh, D. (2015). Organs on chips at the borders of drug discovery, Nature Reviews Drug Discovery, skin. 14(4): 248-260.
  • [21] Hou, X., Zhang, Y. S., Trujillo-de Santiago, G., Alvarez, M. M., Ribas, J., Jonas, S. J. and Khademhosseini, A. (2017). Interplay between materials and microfluidics. Nature Reviews Materials, 2(5): 1-15.
  • [22] Bhattacharjee, N., Urrios, A., Kang, S., and Folch, A. (2016). The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 16(10): 1720-1742.
  • [23] Trantidou, T., Elani, Y., Parsons, E., and Ces, O. (2017). Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsystems & nanoengineering, 3(1): 1-9.
  • [24] Mukhopadhyay, S., Roy, S. S., Mathur, A., Tweedie, M. and McLaughlin, J. A., (2010). Experimental study on capillary flow through polymer microchannel bends for microfluidic applications, Micromech. Microeng. 20(5): 055018.
  • [25] Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13): 2376-2396.
  • [26] Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L and Weitz, D. A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15): 5646-5683.
  • [27] Mac Connell, A. B., Price, A. K. and Paegel, B. M. (2017). An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS combinatorial science, 19(3): 181-192.
  • [28] Wooseok, J., Han, J., Choi, J-W. and Ahn, C. H. (2015). Pointof-care testing (POCT) diagnostic systems using microfluidic lab-on-achip technologies, Microelectronic Engineering Journal, 132, 46-57.
  • [29] Cardoso, V. F., Catarino, S. O., Lanceros-Mendez, S., & Minas, G. (2011). Lab-on-a-chip using acoustic streaming for mixing and pumping fluids. In 1st Portuguese Biomedical Engineering Meeting (1-4). IEEE.
  • [30] Makhijani, V. B., Reich, A. J., Puntambekar, A., Hong, C. and Ahn, C. (2001). Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis, Tech Connect Briefs, 1, 266-269.
  • [31] Krishna, K. S., Yuehao, L. i., Shuning, L. i. and Challa, S., Kumar, S. R. (2013). Labon-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications, Advanced Drug Delivery Reviews Journal, 65(11): 1470-1495.
  • [32] Volpatti, L. R. and Yetisen, A. K. (2014). Commercialization of microfluidic devices, Trends Biotechnol., 32(7): 347-350.
  • [33] Luo, G., Du, L., Wang, Y., and Wang, K. (2019). Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano-and micro-materials. Particuology, 45, 1-19.
  • [34] Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L. and Weitz, D. A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15): 5646-5683.
  • [35] Auerswald, J., Berchtold, S., Diserens, J. M., Gijs, M. A., Jin, Y. H., Knapp, H. F. and Voirin, G. (2009). Lab-on-a-chip for Analysis and Diagnostics: Application to Multiplexed Detection of Antibiotics in Milk. In Nanosystems design and technology (117-142). Springer, Boston, MA.
  • [36] Shi, H., Nie, K., Dong, B., Long, M., Xu, H. and Liu, Z. (2019). Recent progress of microfluidic reactors for biomedical applications. Chemical Engineering Journal, 361, 635-650.
  • [37] Kalaitzakis, M., Kritsotakis, V., Grangeat, P., Paulus, C., Gerfault, L., Perez, M., Reina, C., Potamias, G., Tsiknakis, M., Kafetzopoulos, D. and Binz, P. A. (2008). Proteomic based identification of cancer biomarkers: The LOCCANDIA integrated platform, Proceedings of 8th IEEE International Conference on BioInformatics and BioEngineering, Athens, 1-7.
  • [38] Ziober, B. L., Mauk, M. G., Falls, E. M., Chen, Z., Ziober A.F. and Haim H. B. (2008). Lab‐on‐a‐chip for oral cancer screening and diagnosis, Head & Neck Journal. 30(1): 111-121.
  • [39] Sabo W. D. and Nor A. Y. (2011). Microfluidics-based lab-on-chip systems in DNA-based biosensing: An overview, Sensors Journal, 11(6): 5754-5768.
  • [40] Aryasomayajula, A., Bayat, P., Rezai, P. and Selvaganapathy, P. R. (2017). Microfluidic Devices and Their Applications. In Springer Handbook of Nanotechnology (487-536). Springer, Berlin, Heidelberg.
  • [41] Xu, Z. R., Yang, C. G., Liu, C. H., Zhou, Z., Fang, J. and Wang, J. H. (2010). An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture, Talanta, 80(3): 1088-1093.
  • [42] Young, E. W. and Beebe, D. J. (2010). Fundamentals of microfluidic cell culture in controlled microenvironments, Chem. Soc. Rev., 39, 1036-1048.
  • [43] Bruijns, B., Van Asten, A., Tiggelaar, R., and Gardeniers, H. (2016). Microfluidic devices for forensic DNA analysis: A review. Biosensors, 6(3): 41.
  • [44] Taylor, B. J., Howell, A., Martin, K. A., Manage, D. P., Gordy, W., Campbell, S. D., ... & Atrazhev, A. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria journal, 13(1): 179.
  • [45] Long, C., Xu, H., Shen Q, et al. (2020). Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol.126:108961
  • [46] Ai, T., Yang, Z., Hou, H, et al. (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2): 41-45.
  • [47] Website. Chinese clinical guidance for COVID-19 pneumonia diagnosis and treatment, (2021). https://www.acc.org/latest-in-cardiology/articles/2020/03/17/11/22/chinese-clinical-guidance-for-covid-19-pneumonia-diagnosis-and-treatment
There are 47 citations in total.

Details

Primary Language English
Journal Section Review
Authors

Zülfü Tüylek 0000-0002-9086-1327

Publication Date June 1, 2021
Submission Date February 20, 2021
Acceptance Date May 21, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Tüylek, Z. (2021). Microfluidic Technology and Biomedical Field. NATURENGS, 2(1), 74-87. https://doi.org/10.46572/naturengs.883706