Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 3 Sayı: 2, 46 - 55, 27.12.2022
https://doi.org/10.46572/naturengs.1171676

Öz

Kaynakça

  • [1] Bilgici, G. (2014). New Generalizations of Fibonacci and Lucas Sequences, Applied Mathematical Sciences, 8(29): 1429-1437.
  • [2] Dasdemir A. (2011). On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Appl. Math. Sci., 5(64): 3173–3181.
  • [3] Falcon, S., and Plaza, A. (2007). On the k-Fibonacci Numbers, Chaos,Solitons and Fractals, 32(5): 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
  • [4] Gulec HH, Taskara N. (2012). On the (s,t)-Pell and (s,t)-Pell-Lucas sequences and their matrix representations. Appl. Math. Lett., 25: 1554–1559.
  • [5] Horadam, A.F. (1971). Pell Identities, The Fibonacci Quarterly, 9(3), 245-263.
  • [6] Koshy T. Fibonacci and Lucas numbers with applications. New York, Wiley- Interscience, 2001.
  • [7] Koshy T. Pell and Pell-Lucas numbers with applications, Springer, Berlin, 2014.
  • [8] Taşyurdu Y, Cobanoğlu N, Dilmen Z. (2016). On The a New Family of k-Fibonacci Numbers. Erzincan University Journal of Science and Technology, 9(1): 95-101.
  • [9] Yagmur T. (2019). New Approach to Pell and Pell-Lucas Sequence. Kyungpook Mathematical Journal, 59(1): 23-34.

Identities of Generalized Pell and Pell-Lucas Sequences

Yıl 2022, Cilt: 3 Sayı: 2, 46 - 55, 27.12.2022
https://doi.org/10.46572/naturengs.1171676

Öz

In this paper, we present sums of generalized Pell and Pell-Lucas sequences. These sequences were introduced by Tulay Yagmur in 2019. We establish some connection formulae of involving them. Also, we present its two cross two matrix representation. We have used their Generating function, Binet’s formula and Induction method to derive the identities.

Kaynakça

  • [1] Bilgici, G. (2014). New Generalizations of Fibonacci and Lucas Sequences, Applied Mathematical Sciences, 8(29): 1429-1437.
  • [2] Dasdemir A. (2011). On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Appl. Math. Sci., 5(64): 3173–3181.
  • [3] Falcon, S., and Plaza, A. (2007). On the k-Fibonacci Numbers, Chaos,Solitons and Fractals, 32(5): 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
  • [4] Gulec HH, Taskara N. (2012). On the (s,t)-Pell and (s,t)-Pell-Lucas sequences and their matrix representations. Appl. Math. Lett., 25: 1554–1559.
  • [5] Horadam, A.F. (1971). Pell Identities, The Fibonacci Quarterly, 9(3), 245-263.
  • [6] Koshy T. Fibonacci and Lucas numbers with applications. New York, Wiley- Interscience, 2001.
  • [7] Koshy T. Pell and Pell-Lucas numbers with applications, Springer, Berlin, 2014.
  • [8] Taşyurdu Y, Cobanoğlu N, Dilmen Z. (2016). On The a New Family of k-Fibonacci Numbers. Erzincan University Journal of Science and Technology, 9(1): 95-101.
  • [9] Yagmur T. (2019). New Approach to Pell and Pell-Lucas Sequence. Kyungpook Mathematical Journal, 59(1): 23-34.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Yashwant Panwar 0000-0002-9120-9111

Yayımlanma Tarihi 27 Aralık 2022
Gönderilme Tarihi 6 Eylül 2022
Kabul Tarihi 20 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 2

Kaynak Göster

APA Panwar, Y. (2022). Identities of Generalized Pell and Pell-Lucas Sequences. NATURENGS, 3(2), 46-55. https://doi.org/10.46572/naturengs.1171676