Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 3, 144 - 153, 31.12.2024
https://doi.org/10.28978/nesciences.1606623

Abstract

References

  • Agnes Pravina, X., Radhika, R., & Ramesh Palappan, R. (2024). Financial Inclusiveness and Literacy Awareness of Fisherfolk in Kanyakumari District: An Empirical Study. Indian Journal of Information Sources and Services, 14(3), 265–269. https://doi.org/10.51983/ijiss-2024.14.3.34
  • Ahmed, I.M. (2024). Optimum Design of Reinforced Concrete Beams with Large Opening Using Neural Network Algorithm. International Academic Journal of Science and Engineering, 11(1), 138-152. http://doi.org/10.9756/IAJSE/V11I1/IAJSE1117
  • Freire, K. M. F., Belhabib, D., Espedido, J. C., Hood, L., Kleisner, K. M., Lam, V. W., ... & Pauly, D. (2020). Estimating global catches of marine recreational fisheries. Frontiers in Marine Science, 7, 12. https://doi.org/10.3389/fmars.2020.00012
  • Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., ... & Tao, D. (2022). A survey on vision transformer. IEEE transactions on pattern analysis and machine intelligence, 45(1), 87-110. https://doi.org/10.1109/TPAMI.2022.3152247
  • Harris, D., Johnston, D., & Yeoh, D. (2021). More for less: Citizen science supporting the management of small-scale recreational fisheries. Regional Studies in Marine Science, 48, 102047. https://doi.org/10.1016/j.rsma.2021.102047
  • Honarmand Ebrahimi, S., Ossewaarde, M., & Need, A. (2021). Smart fishery: a systematic review and research agenda for sustainable fisheries in the age of AI. Sustainability, 13(11), 6037. https://doi.org/10.3390/su13116037
  • Hyder, K., Maravelias, C. D., Kraan, M., Radford, Z., & Prellezo, R. (2020). Marine recreational fisheries—current state and future opportunities. ICES Journal of Marine Science, 77(6), 2171-2180. https://doi.org/10.1093/icesjms/fsaa147
  • Iqbal, M. A., Wang, Z., Ali, Z. A., & Riaz, S. (2021). Automatic fish species classification using deep convolutional neural networks. Wireless Personal Communications, 116, 1043-1053. https://doi.org/10.1007/s11277-019-06634-1
  • Jahanbakht, M., Xiang, W., Waltham, N. J., & Azghadi, M. R. (2022). Distributed deep learning and energy-efficient real-time image processing at the edge for fish segmentation in underwater videos. IEEE Access, 10, 117796-117807. https://doi.org/10.1109/ACCESS.2022.3202975
  • Kim, K., Ko, E., Kim, J., & Yi, J. H. (2019). Intelligent Malware Detection Based on Hybrid Learning of API and ACG on Android. Journal of Internet Services and Information Security, 9(4), 39-48. https://doi.org/10.22667/JISIS.2019.11.30.039
  • Larkin, K. E., Marsan, A. A., Tonné, N., Van Isacker, N., Collart, T., Delaney, C., ... & Calewaert, J. B. (2022). Connecting marine data to society. In Ocean Science Data (pp. 283-317). Elsevier. https://doi.org/10.1016/B978-0-12-823427-3.00003-7
  • Lekunberri, X., Ruiz, J., Quincoces, I., Dornaika, F., Arganda-Carreras, I., & Fernandes, J. A. (2022). Identification and measurement of tropical tuna species in purse seiner catches using computer vision and deep learning. Ecological Informatics, 67, 101495. https://doi.org/10.1016/j.ecoinf.2021.101495
  • Li, S., Li, P., He, S., Kuai, Z., Gu, Y., Liu, H., ... & Lin, Y. (2024). An Automatic Detection and Statistical Method for Underwater Fish Based on Foreground Region Convolution Network (FR-CNN). Journal of Marine Science and Engineering, 12(8), 1343. https://doi.org/10.3390/jmse12081343
  • Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., ... & Lendasse, A. (2018, October). Embedded online fish detection and tracking system via YOLOv3 and parallel correlation filter. In Oceans 2018 Mts/Ieee Charleston (pp. 1-6). IEEE. https://doi.org/10.1109/OCEANS.2018.8604658
  • Pedersen, M., Bruslund Haurum, J., Gade, R., & Moeslund, T. B. (2019). Detection of marine animals in a new underwater dataset with varying visibility. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 18-26).
  • Qu, H., Wang, G. G., Li, Y., Qi, X., & Zhang, M. (2024). ConvFishNet: An efficient backbone for fish classification from composited underwater images. Information Sciences, 121078. https://doi.org/10.1016/j.ins.2024.121078
  • Scherrer, K., & Galbraith, E. (2020). Regulation strength and technology creep play key roles in global long-term projections of wild capture fisheries. ICES Journal of Marine Science, 77(7-8), 2518-2528. https://doi.org/10.1093/icesjms/fsaa109
  • Silva, C. N., Dainys, J., Simmons, S., Vienožinskis, V., & Audzijonyte, A. (2022). A scalable open-source framework for machine learning-based image collection, annotation and classification: a case study for automatic fish species identification. Sustainability, 14(21), 14324. https://doi.org/10.3390/su142114324
  • Teng, B., & Zhao, H. (2020). Underwater target recognition methods based on the framework of deep learning: A survey. International Journal of Advanced Robotic Systems, 17(6), 1729881420976307. https://doi.org/10.1177/1729881420976307
  • Trivedi, J., Devi, M. S., & Solanki, B. (2023). Step Towards Intelligent Transportation System with Vehicle Classification and Recognition Using Speeded-up Robust Features. Archives for Technical Sciences, 1(28), 39-56. https://doi.org/10.59456/afts.2023.1528.039J
  • Uyan, A. (2022). A Review on the Potential Usage of Lionfishes (Pterois spp.) in Biomedical and Bioinspired Applications. Natural and Engineering Sciences, 7(2), 214-227. http://doi.org/10.28978/nesciences.1159313
  • Wei, X. S., Song, Y. Z., Mac Aodha, O., Wu, J., Peng, Y., Tang, J., ... & Belongie, S. (2021). Fine-grained image analysis with deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(12), 8927-8948. https://doi.org/10.1109/TPAMI.2021.3126648
  • Xue, M. (2024). Assessing the Recreational Fishers and their Catches based on Social Media Platforms: Privacy and Ethical Data Analysis Considerations. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(3), 521-542. https://doi.org/10.58346/JOWUA.2024.I3.033
  • Zhang, X., Huang, B., Chen, G., Radenkovic, M., & Hou, G. (2023). WildFishNet: Open set wild fish recognition deep neural network with fusion activation pattern. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2023.3299703

A Deep Learning-based Intelligent Automatic Detection and Classification of Fish Species in Marine Environment

Year 2024, Volume: 9 Issue: 3, 144 - 153, 31.12.2024
https://doi.org/10.28978/nesciences.1606623

Abstract

As marine environments encounter escalating threats and obstacles, accurate and effective Fish Species Classification (FSC) has become crucial for managing fisheries, preserving biodiversity, and ecological surveillance. Considering the substantial volume of georeferenced fish photographs gathered daily by fishermen, artificial intelligence (AI) and computer vision (CV) technologies provide significant potential to automate their analysis via species recognition and classification. This study investigates utilizing Deep Learning (DL) techniques alongside appearance-based feature selection to automatically and precisely determine fish species from images. The research utilizes many aquatic fish images, including diverse species, sizes, and ecological settings. Conventional DL models struggle to capture long-term dependencies and necessitate fixed input sizes, rendering them less adaptable when processing images of varying dimensions. The Vision Transformer (VT) mitigates these limitations using the transformer model's Self-Attention Mechanisms (SAM). This paper employs a VT to address the FSC problem and provides Intelligent Automatic Detection and FSC in Marine Environment (IAD-FSC-ME). VT's efficacy is evaluated compared to pre-trained Convolutional Neural Network (CNN) models: VGG19, DenseNet121, ResNet50v2, InceptionV3, and Xception. The investigations utilize an open data set (Fish4Knowledge), wherein both the object detection and classification systems are enhanced with subtropical fish species of interest. It has been observed that VT surpassed the prevailing literature by attaining 99.14% accuracy in efficient FSC.

References

  • Agnes Pravina, X., Radhika, R., & Ramesh Palappan, R. (2024). Financial Inclusiveness and Literacy Awareness of Fisherfolk in Kanyakumari District: An Empirical Study. Indian Journal of Information Sources and Services, 14(3), 265–269. https://doi.org/10.51983/ijiss-2024.14.3.34
  • Ahmed, I.M. (2024). Optimum Design of Reinforced Concrete Beams with Large Opening Using Neural Network Algorithm. International Academic Journal of Science and Engineering, 11(1), 138-152. http://doi.org/10.9756/IAJSE/V11I1/IAJSE1117
  • Freire, K. M. F., Belhabib, D., Espedido, J. C., Hood, L., Kleisner, K. M., Lam, V. W., ... & Pauly, D. (2020). Estimating global catches of marine recreational fisheries. Frontiers in Marine Science, 7, 12. https://doi.org/10.3389/fmars.2020.00012
  • Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., ... & Tao, D. (2022). A survey on vision transformer. IEEE transactions on pattern analysis and machine intelligence, 45(1), 87-110. https://doi.org/10.1109/TPAMI.2022.3152247
  • Harris, D., Johnston, D., & Yeoh, D. (2021). More for less: Citizen science supporting the management of small-scale recreational fisheries. Regional Studies in Marine Science, 48, 102047. https://doi.org/10.1016/j.rsma.2021.102047
  • Honarmand Ebrahimi, S., Ossewaarde, M., & Need, A. (2021). Smart fishery: a systematic review and research agenda for sustainable fisheries in the age of AI. Sustainability, 13(11), 6037. https://doi.org/10.3390/su13116037
  • Hyder, K., Maravelias, C. D., Kraan, M., Radford, Z., & Prellezo, R. (2020). Marine recreational fisheries—current state and future opportunities. ICES Journal of Marine Science, 77(6), 2171-2180. https://doi.org/10.1093/icesjms/fsaa147
  • Iqbal, M. A., Wang, Z., Ali, Z. A., & Riaz, S. (2021). Automatic fish species classification using deep convolutional neural networks. Wireless Personal Communications, 116, 1043-1053. https://doi.org/10.1007/s11277-019-06634-1
  • Jahanbakht, M., Xiang, W., Waltham, N. J., & Azghadi, M. R. (2022). Distributed deep learning and energy-efficient real-time image processing at the edge for fish segmentation in underwater videos. IEEE Access, 10, 117796-117807. https://doi.org/10.1109/ACCESS.2022.3202975
  • Kim, K., Ko, E., Kim, J., & Yi, J. H. (2019). Intelligent Malware Detection Based on Hybrid Learning of API and ACG on Android. Journal of Internet Services and Information Security, 9(4), 39-48. https://doi.org/10.22667/JISIS.2019.11.30.039
  • Larkin, K. E., Marsan, A. A., Tonné, N., Van Isacker, N., Collart, T., Delaney, C., ... & Calewaert, J. B. (2022). Connecting marine data to society. In Ocean Science Data (pp. 283-317). Elsevier. https://doi.org/10.1016/B978-0-12-823427-3.00003-7
  • Lekunberri, X., Ruiz, J., Quincoces, I., Dornaika, F., Arganda-Carreras, I., & Fernandes, J. A. (2022). Identification and measurement of tropical tuna species in purse seiner catches using computer vision and deep learning. Ecological Informatics, 67, 101495. https://doi.org/10.1016/j.ecoinf.2021.101495
  • Li, S., Li, P., He, S., Kuai, Z., Gu, Y., Liu, H., ... & Lin, Y. (2024). An Automatic Detection and Statistical Method for Underwater Fish Based on Foreground Region Convolution Network (FR-CNN). Journal of Marine Science and Engineering, 12(8), 1343. https://doi.org/10.3390/jmse12081343
  • Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., ... & Lendasse, A. (2018, October). Embedded online fish detection and tracking system via YOLOv3 and parallel correlation filter. In Oceans 2018 Mts/Ieee Charleston (pp. 1-6). IEEE. https://doi.org/10.1109/OCEANS.2018.8604658
  • Pedersen, M., Bruslund Haurum, J., Gade, R., & Moeslund, T. B. (2019). Detection of marine animals in a new underwater dataset with varying visibility. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 18-26).
  • Qu, H., Wang, G. G., Li, Y., Qi, X., & Zhang, M. (2024). ConvFishNet: An efficient backbone for fish classification from composited underwater images. Information Sciences, 121078. https://doi.org/10.1016/j.ins.2024.121078
  • Scherrer, K., & Galbraith, E. (2020). Regulation strength and technology creep play key roles in global long-term projections of wild capture fisheries. ICES Journal of Marine Science, 77(7-8), 2518-2528. https://doi.org/10.1093/icesjms/fsaa109
  • Silva, C. N., Dainys, J., Simmons, S., Vienožinskis, V., & Audzijonyte, A. (2022). A scalable open-source framework for machine learning-based image collection, annotation and classification: a case study for automatic fish species identification. Sustainability, 14(21), 14324. https://doi.org/10.3390/su142114324
  • Teng, B., & Zhao, H. (2020). Underwater target recognition methods based on the framework of deep learning: A survey. International Journal of Advanced Robotic Systems, 17(6), 1729881420976307. https://doi.org/10.1177/1729881420976307
  • Trivedi, J., Devi, M. S., & Solanki, B. (2023). Step Towards Intelligent Transportation System with Vehicle Classification and Recognition Using Speeded-up Robust Features. Archives for Technical Sciences, 1(28), 39-56. https://doi.org/10.59456/afts.2023.1528.039J
  • Uyan, A. (2022). A Review on the Potential Usage of Lionfishes (Pterois spp.) in Biomedical and Bioinspired Applications. Natural and Engineering Sciences, 7(2), 214-227. http://doi.org/10.28978/nesciences.1159313
  • Wei, X. S., Song, Y. Z., Mac Aodha, O., Wu, J., Peng, Y., Tang, J., ... & Belongie, S. (2021). Fine-grained image analysis with deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(12), 8927-8948. https://doi.org/10.1109/TPAMI.2021.3126648
  • Xue, M. (2024). Assessing the Recreational Fishers and their Catches based on Social Media Platforms: Privacy and Ethical Data Analysis Considerations. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(3), 521-542. https://doi.org/10.58346/JOWUA.2024.I3.033
  • Zhang, X., Huang, B., Chen, G., Radenkovic, M., & Hou, G. (2023). WildFishNet: Open set wild fish recognition deep neural network with fusion activation pattern. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2023.3299703
There are 24 citations in total.

Details

Primary Language English
Subjects Environmental Marine Biotechnology
Journal Section Articles
Authors

Ashu Nayak 0009-0002-8371-7324

Rahman F This is me 0009-0007-7167-188X

Publication Date December 31, 2024
Submission Date December 24, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Nayak, A., & F, R. (2024). A Deep Learning-based Intelligent Automatic Detection and Classification of Fish Species in Marine Environment. Natural and Engineering Sciences, 9(3), 144-153. https://doi.org/10.28978/nesciences.1606623

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015