Research Article
BibTex RIS Cite

The Role of Earthworms in Heavy Metal Remediation of Selected Soil in Baghdad Governorate/Iraq

Year 2025, Volume: 10 Issue: 2, 510 - 523, 01.09.2025
https://doi.org/10.28978/nesciences.1744885

Abstract

This study examined the earthworms' role in removing heavy metals and their impact on soil degradation in some regions of Baghdad City/Iraq. Six sites named agricultural (S1), Plastic factory (S2), Oil factory (S3), Barren (S4), Residential soil (S5), and landfill soil (S6), between February and June 2024 were collected, In the dry period, the total concentration of Pb, Cu, Zn, Mn, Cd, and Fe heavy metals in the soil samples range from 3.13 to 26.4mg kg-1, 4.2 to 33.6mg kg-1, 15.9 to 114mg kg-1, 319 to 715mg kg-1, 0.81 to 5.19mg kg-1, and 603 to 5142 mg kg-1; in the wet period, it ranges from 3.07 to 24.7mg kg-1, 13.3 to 31.13mg kg-1, 23.17 to 106.9mg kg-1, 299.2 to 690mg kg-1, 0.35 to 2.05mg kg-1 and 565 to 4822 mg kg-1. The results show that the conditions of 50 earthworms and 28 days, had the best reduction rate in the concentrations of heavy elements (cadmium and copper) in the three contaminated soils (S3, S5, and S6). The worms' high ability and maturity during the 28 days before their death were the causes of these rates and the treatment was affected by contamination level, soil moisture, and Aeration. At the 5% probability level, the results revealed a negative and significant correlation, with an efficiency (R2 x 100) ranging from 67 to 99.0. The regression analysis's findings also demonstrated that employing a large number of earthworms (50) reduced the cadmium concentration in the three polluted soils by -0.044, -0.057, and -0.0929 units per day of treatment, respectively, with use efficiencies of 89.9%, 67.0%, and 99%. the copper content in the polluted soils (S6, S5, S3) decreased by -0.0444, -0.227, and -0.141 one unit per unit. With a usage efficiency of 89.9, 91.1, and 84.3.

References

  • Abishek, U., Abishek, R. S., Sanjay, J., & Mounika, S. (2023). IOT-Based Soil Moisture Detection Using Arduino with A Farmer's Guidance App. International Journal of Advances in Engineering and Emerging Technology, 14(1), 164-167.
  • Ali, M. O. (2010). Study of pollution by heavy elements in some parts of Baghdad. Baghdad Science Journal, 7(2), 12. https://doi.org/10.21123/bsj.2010.7.2.955-962.
  • Al-Paruany, K. B., Ali, A. J. A., Hussain, K. I., Khalaf, H. S., & Alias, M. F. (2018). Assessment of heavy metals in some ground water wells at Baghdad City/Iraq. Journal of Global Pharma Technology, 10(3), 62-70.
  • Al-Sudani, I. M., Al Lami, M. H., Al Obaidy, A. H. M. J., & Al-Rubaye, S. M. J. (2021). Spatial distribution of some heavy metals in urban soil of Western Iraq. Annals of the Romanian Society for Cell Biology, 25(4), 10550-10558.
  • Andre, J., Charnock, J., Stürzenbaum, S. R., Kille, P., Morgan, A. J., & Hodson, M. E. (2009). Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses. Environmental science & technology, 43(17), 6822-6829. https://doi.org/10.1021/es900275e
  • Bhadauria, T., & Saxena, K. G. (2010). Role of earthworms in soil fertility maintenance through the production of biogenic structures. Applied and environmental soil science, 2010(1), 816073. https://doi.org/10.1155/2010/816073
  • Black, C. A., & Evans, D. D. (1965). Methods of soil analysis. Agronomy.
  • Brevik, E. C., & Sauer, T. J. (2015). The past, present, and future of soils and human health studies. Soil, 1(1), 35-46. https://doi.org/10.5194/soil-1-35-2015
  • Dadrasnia, A., Shahsavari, N., & Emenike, C. U. (2013). Remediation of contaminated sites. Hydrocarbon, 16, 65-82. https://doi.org/10.5772/51591
  • Ibrahim, Z. H., & Al-Mashhadani, A. H. (2025). Treatment of Contaminated Soil with NORM of Oilfields by Chemical Extraction Method. Baghdad Science Journal, 22(2), 576-587. https://doi.org/10.21123/bsj.2024.9968
  • Jackson, M. L. (1958). Soil chemical analysis practice. Hall. Inc. Eagle Wood Chaff, New York.
  • Jones, J. B. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC press.
  • Kamboj, N., Kumar, A., Kamboj, V., Bisht, A., Pandey, N., & Bharti, M. (2021). Role of earthworm biodiversity in soil fertility and crop productivity improvement. Biological Diversity: Current Status and Conservation Policies, 1, 230-241.
  • Khwedim, K. (2013). Study of distribution of some trace elements contents in the soil of Basra city using Geographic Information System (GIS). Journal of Babylon University/Pure and Applied Sciences, 21(2), 479-509.
  • Khyade, V. B., & Wanve, H. V. (2018). Review on Use of Mathematics for Progression of Biological Sciences. International Academic Journal of Innovative Research, 5(1), 30–38.
  • Lee, K. E. (1985). Earthworms: their ecology and relationships with soils and land use (pp. 411-pp).
  • Lee, S. H., Kim, E. Y., Hyun, S., & Kim, J. G. (2009). Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions. Journal of Hazardous Materials, 170(1), 382-388. https://doi.org/10.1016/j.jhazmat.2009.04.088
  • Mahdiraji, E. A., & Ramezani, N. (2019). The Influences of Soil Ionization in the Grounding System and Corona Phenomena on the Injection Lightning Current of 1000 KV UHV Transmission Line. International Academic Journal of Science and Engineering, 6(1), 39-50. https://doi.org/10.9756/IAJSE/V6I1/1910004
  • Mandal, A., Thakur, J. K., Sahu, A., Bhattacharjya, S., Manna, M. C., & Patra, A. K. (2017). Plant–microbe interaction for the removal of heavy metal from contaminated site. In Plant-microbe interaction: An approach to sustainable agriculture (pp. 227-247). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-2854-0_11
  • Mohsen Jabbar, N., Kareem Mohammed, A., & Hasan Kadhim, E. (2019). Bioremediation of petroleum hydrocarbons contaminated soil using bio piles system. Baghdad Science Journal, 16(1), 24. https://doi.org/10.21123/bsj.2019.16.1(Suppl.).0185
  • Mora, P., Seugé, C., Chotte, J. L., & Rouland, C. (2003). Physico-chemical typology of the biogenic structures of termites and earthworms: a comparative analysis. Biology and Fertility of Soils, 37(4), 245-249. https://doi.org/10.1007/s00374-003-0592-7
  • Mousa, T. U. (2022). The Role of the Accounting Profession in Controlling Environmental Pollution According to Requirements of Social Responsibility in Industrial Companies. International Academic Journal of Social Sciences, 9(1), 29-42. https://doi.org/10.9756/IAJSS/V9I1/IAJSS0904
  • Nahmani, J., Hodson, M. E., & Black, S. (2007). A review of studies performed to assess metal uptake by earthworms. Environmental pollution, 145(2), 402-424. https://doi.org/10.1016/j.envpol.2006.04.009
  • Oliver, M. A., & Gregory, P. J. (2015). Soil, food security and human health: a review. European Journal of Soil Science, 66(2), 257-276. https://doi.org/10.1111/ejss.12216
  • Otieno, J., & Wanjiru, G. (2024). Seismic Innovations: Strengthening Tall Buildings with Advanced Earthquake-Resistant Technologies. Association Journal of Interdisciplinary Technics in Engineering Mechanics, 2(3), 18-21.
  • Page, A. L., Miller, R. H., & Kenney, D. R. (1982). Method of soil analysis, part 2, 2nd Agron. Madison Wisconsin, U.S.A.
  • Pavel, L. V., & Gavrilescu, M. (2008). Overview of ex situ decontamination techniques for soil cleanup. Environmental Engineering & Management Journal (EEMJ), 7(6).
  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment international, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067
  • Ramos, J. L., Gonzalez-Perez, M. M., Caballero, A., & Van Dillewijn, P. (2005). Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Current opinion in biotechnology, 16(3), 275-281. https://doi.org/10.1016/j.copbio.2005.03.010
  • Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., ... & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116
  • Satchell J. E. (1967). Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic, London.
  • Shi, D., Xie, C., Wang, J., & Xiong, L. (2021). Changes in the structures and directions of heavy metal-contaminated soil remediation research from 1999 to 2020: A bibliometric & scientometric study. International Journal of Environmental Research and Public Health, 18(14), 7358. https://doi.org/10.3390/ijerph18147358
  • Subramanian, M. V., & Malhotra, R. (2023). Bioinspired Filtration Systems for Heavy Metal Removal from Industrial Effluents. Engineering Perspectives in Filtration and Separation, 1-4.
  • Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M. B., Williams, M. A., & Yoshihara, T. (2020). Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. Journal of Agricultural and Food Chemistry, 68(46), 12856-12869. https://doi.org/10.1021/acs.jafc.0c00183
  • Villenave, C., Charpentier, F., Lavelle, P., Feller, C., Brussaard, L., Pashanasi, B., ... & Patron, J. C. (1999). Effects of earthworms on soil organic matter and nutrient dynamics following earthworm inoculation in field experimental situations. Earthworm management in tropical agroecosystems, 173-197.
  • Wu, P., Wang, Z., Bolan, N. S., Wang, H., Wang, Y., & Chen, W. (2021). Visualizing the development trend and research frontiers of biochar in 2020: a scientometric perspective. Biochar, 3(4), 419-436. https://doi.org/10.1007/s42773-021-00120-3
  • Yuan, X. (2023). Current problems and countermeasures of soil pollution management. In E3S Web of Conferences (Vol. 424, p. 04017). EDP Sciences.
  • Zang, F., Wang, S., Nan, Z., Ma, J., Zhang, Q., Chen, Y., & Li, Y. (2017). Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma, 305, 188-196. https://doi.org/10.1016/j.geoderma.2017.06.008
  • Znad, S. R., & Al-Sinjary, M. N. (2020). Assessment of heavy metal pollution of industrial zones in mosul city. Plant Archives, 20(2), 256-263.
There are 39 citations in total.

Details

Primary Language English
Subjects Environmental Marine Biotechnology
Journal Section Articles
Authors

Ulla Reyadh 0009-0000-5363-6457

Kamal B. Al-paruany This is me 0009-0000-0865-3856

Maysoon H. Mashjel This is me 0000-0002-6730-2711

Publication Date September 1, 2025
Submission Date July 17, 2025
Acceptance Date July 31, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Reyadh, U., Al-paruany, K. B., & H. Mashjel, M. (2025). The Role of Earthworms in Heavy Metal Remediation of Selected Soil in Baghdad Governorate/Iraq. Natural and Engineering Sciences, 10(2), 510-523. https://doi.org/10.28978/nesciences.1744885

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015