Research Article
BibTex RIS Cite

The Role of Biotechnology in Animal Nutrition

Year 2025, Volume: 10 Issue: 2, 540 - 551, 01.09.2025
https://doi.org/10.28978/nesciences.1758862

Abstract

This review supplies an overview of the key role played by modern biotechnology in the advancement of animal nutrition. With the global demand for animal products rising, new strategies are needed to enhance feed efficiency, animal health, and the sustainability of animal production. The review highlights how biotechnological interventions, including genetic modification (GM) and precision gene-editing technologies like CRISPR, address challenges posed by traditional feeding systems such as nutrient digestibility, anti-nutritional factors, and environmental sustainability. The paper addresses the application of genetic engineering in consolidate the nutritional amount of feed crops, utilization of improved enzymes, and the design of next-generation probiotics and prebiotics to re-model the gut microbiota. It also discusses new methods of manipulating the rumen microbiome for greater efficiency and methane synthesis reduction. The review concludes that these advances have the potential to get better nutrient employment, lower fodder expenses, minimize the environmental footprint of animal agriculture, and decrease reliance on antibiotic growth promoters. Moreover, the review shines a light on the complex social, economic, and ethical considerations that accompany these technologies, particularly with emerging gene-editing technologies that demand new regulatory frameworks and public debate. It outlines important areas of future research, including long-term ecological effects studies and further understanding of host-microbiome interactions. The abstract calls for continued research to advance these technologies, their efficacy and safety, and public acceptance to maximize their complete potential for sustainable animal production.

References

  • Adebiyi, O. A., & Adebiyi, F. G. (2023). Unlocking the potentials of feed enzymes in animal nutrition: a review. Applied Tropical Agriculture, 28(2), 1-10.
  • Asghar MU, Sajid QU, Wilk M, Konkol D, Korczyński M. Influence of various methods of processing soybeans on protein digestibility and reduction of nitrogen deposits in the natural environment–a review. Annals of Animal Science. 2024 Oct 1;24(4):1037-49.
  • Canton, H. (2021). Food and agriculture organization of the United Nations—FAO. In The Europa directory of international organizations 2021 (pp. 297-305). Routledge.Urgessa, O. E., Koyamo, R., Dinka, H., Tefese, K., & Gemeda, M. T. (2024). Review on desirable microbial phytases as a poultry feed additive: their sources, production, enzymatic evaluation, market size, and regulation. International Journal of Microbiology, 2024(1), 9400374. https://doi.org/10.1155/2024/9400374.
  • Charitos, I. A., Colella, M., Carretta, D. M., & Santacroce, L. (2025). Probiotics, gut microbiota and physical activity: A close relationship. Sports Medicine and Health Science. https://doi.org/10.1016/j.smhs.2025.04.003.
  • Dimas, A. T. (2022). Evaluation of Corn Expressed Glucanase and High and Low Specific Activity Corn Expressed Phytase at Different Inclusion Rates on Growth Performance of Broilers Fed Corn-Soybean Meal Based Diets (Doctoral dissertation).
  • Driscoll, A., & Edwards, B. (2024). Concentrated Animal Feeding Operations. In Encyclopedia of Technological Hazards and Disasters in the Social Sciences (pp. 152-158). Edward Elgar Publishing. https://doi.org/10.4337/9781800882201.ch24.
  • Gao, C., Kikulwe, E. M., Kuzma, J., Lema, M., Lidder, P., Robinson, J., ... & Zhao, K. (2022). Gene editing and agrifood systems. https://doi.org/10.4060/cc3579en.
  • Gao, Y., Li, Z., Hong, S., Yu, L., Li, S., Wei, J., ... & Wang, X. (2025). Recent stabilization of agricultural non-CO2 greenhouse gas emissions in China. National Science Review, 12(4), nwaf040. https://doi.org/10.1093/nsr/nwaf040.
  • García-Rodríguez, J., Mateos, I., Saro, C., González, J. S., Carro, M. D., & Ranilla, M. J. (2020). Replacing forage by crude olive cake in a dairy sheep diet: Effects on ruminal fermentation and microbial populations in rusitec fermenters. Animals, 10(12), 2235. https://doi.org/10.3390/ani10122235.
  • Jha, R., & Mishra, P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology, 12(1), 51.
  • Jiang, Z., Mei, L., Li, Y., Guo, Y., Yang, B., Huang, Z., & Li, Y. (2024). Enzymatic regulation of the gut microbiota: mechanisms and implications for host health. Biomolecules, 14(12), 1638. https://doi.org/10.3390/biom14121638.
  • Kapoor, T., Kansal, A., Mohamed Jaffar, A., Venkatesan, D., Sarmah, R. G., Renuka Jyothi, R., & Verma, S. (2025). Nutritional innovations in aquafeed for sustainable and eco-friendly fish farming. International Journal of Aquatic Research and Environmental Studies, 5(1), 685–695. https://doi.org/10.70102/IJARES/V5I1/5-1-61
  • Khan, A., Qadeer, A., Wajid, A., Ullah, Q., Rahman, S. U., Ullah, K., ... & Horky, P. (2024). Microplastics in animal nutrition: Occurrence, spread, and hazard in animals. Journal of Agriculture and Food Research, 17, 101258.https://doi.org/10.1016/j.jafr.2024.101258.
  • Kumar, R. B., & Sunil, K. (2024). Biotechnological Approaches to Develop Personalized Medicines for Rare Genetic Disorders. Clinical Journal for Medicine, Health and Pharmacy, 2(2), 20-28.
  • Kumar, V., Sinha, A. K., Makkar, H. P., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food chemistry, 120(4), 945-959. https://doi.org/10.1016/j.foodchem.2009.11.052.
  • Malešević, Z., Govedarica-Lučić, A., Bošković, I., Petković, M., Đukić, D., & Đurović, V. (2023). Influence of different nutrient sources and genotypes on the chemical quality and yield of lettuce.
  • Martin, G. B. (2024). Perspective: science and the future of livestock industries. Frontiers in Veterinary Science, 11, 1359247.https://doi.org/10.3389/fvets.2024.1359247.
  • Mehrani, M. J., Tashayoei, M. R., Ferdowsi, A., & Hashemi, H. (2016). Qualitative evaluation of antibiotics in WWTP and review of some antibiotics removal methods. International Academic Journal of Science and Engineering, 3(2), 11-22.
  • Menon, R., & Joshi, A. (2024). Enzyme Recovery and Reuse via Ultrafiltration in Dairy Processing. Engineering Perspectives in Filtration and Separation, 1-4.
  • Moss, O. (2025). Enhancing rapeseed seedcake quality for feed and food using CRISPR-Cas RNP gene editing. Acta Universitatis Agriculturae Sueciae, (2025: 24). https://doi.org/10.54612/a.1dk92laqgh.
  • Patra, A. K., & Park, T. (2022). Rumen microbiome and its manipulation for improving ruminant production. Animals, 12(15), 1895.
  • Rahman, Saleem Ur, Evan McCoy, Ghulam Raza, Zahir Ali, Shahid Mansoor, and Imran Amin. "Improvement of soybean; A way forward transition from genetic engineering to new plant breeding technologies." Molecular Biotechnology 65, no. 2 (2023): 162-180.
  • Said, S., Agung, P. P., Putra, W. P. B., & Kaiin, E. M. (2020, April). The role of biotechnology in animal production. In IOP Conference Series: Earth and Environmental Science (Vol. 492, No. 1, p. 012035). IOP Publishing.
  • Sandhu, R., Chaudhary, N., Shams, R., & Dash, K. K. (2025). Genetically modified crops and sustainable development: navigating challenges and opportunities. Food Science and Biotechnology, 34(2), 307-323.
  • Sharma, P., & Subramanian, K. (2025). Molecular Mechanisms of Antibiotic Resistance in Bacteria. In Medxplore: Frontiers in Medical Science (pp. 19-36). Periodic Series in Multidisciplinary Studies.
  • Swanson, K. S., Allenspach, K., Amos, G., Auchtung, T. A., Bassett, S. A., Bjørnvad, C. R., ... & Fahey Jr, G. C. (2025). Use of biotics in animals: impact on nutrition, health, and food production. Journal of Animal Science, 103, skaf061. https://doi.org/10.1093/jas/skaf061.
  • Van Eenennaam, A. L., De Figueiredo Silva, F., Trott, J. F., & Zilberman, D. (2021). Genetic engineering of livestock: the opportunity cost of regulatory delay. Annual Review of Animal Biosciences, 9(1), 453-478. https://doi.org/10.1146/annurev-animal-061220-023052.
  • Witten, S., Werner, D., Veit, C., Schubbert, A., Kölln, M., Kluess, J., ... & Aulrich, K. (2024). Supply of protein feed to young pigs and chickens in organic farming (No. 240a). Thünen Working Paper. https:// doi:10.3220/WP1715760422000
  • Wu, S. B. (2024). Advancements in animal nutrition: The interplay of feed enzymes, gut health, and nutrient supply in poultry and pig production–A tribute to Professor Mingan Choct's 30-year scientific legacy. Animal Nutrition, 17, 373. https:// doi: 10.1016/j.aninu.2024.03.002.
  • Yoo, S., Jung, S. C., Kwak, K., & Kim, J. S. (2024). The role of prebiotics in modulating gut microbiota: implications for human health. International Journal of Molecular Sciences, 25(9), 4834. https://doi.org/10.3390/ijms25094834.
There are 30 citations in total.

Details

Primary Language English
Subjects Agricultural Marine Biotechnology
Journal Section Articles
Authors

Ali. Abdalwahab. M. Al-kuhla 0000-0001-8320-0558

Publication Date September 1, 2025
Submission Date August 5, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA M. Al-kuhla, A. A. (2025). The Role of Biotechnology in Animal Nutrition. Natural and Engineering Sciences, 10(2), 540-551. https://doi.org/10.28978/nesciences.1758862

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015