Applying the Species-Area Relationship Model to Predict Biodiversity Loss in Deforested Regions
Year 2025,
Volume: 10 Issue: 2, 79 - 92, 01.09.2025
Rajeev Sharma
,
Astik Kumar Pradhan
Balasankar Karavadi
Subrat Kumar Mahapatra
Adarsha Harinaiha
Preeti Handa Kakkar
Abstract
The environmental issue of biodiversity loss due to deforestation remains a significant concern, particularly in tropical and subtropical regions. This research employs the Species-Area Relationship (SAR) model to predict biodiversity loss in deforested areas by examining the relationship between habitat area and the number of species. To estimate the number of potential species extinctions from various degrees of forest loss, we utilize high-resolution land cover data and species inventories from selected priority biodiversity hotspots. The SAR model S = cA^z, where S is species richness, A is area, and c and z are constant values, helps predict the change in biodiversity loss as natural habitats are fragmented or lost. The results show similar patterns of species richness decline as the area of forest is reduced, with the impact being greater in areas of higher endemism. The predictions of the SAR model align with existing literature and patterns regarding species decline, suggesting that the SAR model is a valuable tool for conservation planning. This research paper highlights the importance of protecting remaining forests and informs policy discussions on biodiversity loss. Additionally, it highlights key takeaways regarding the use of spatial ecology models with land-use policy to achieve sustainable development and conserve ecosystems. Further research has been identified - we will revise model parameters using species-specific data to improve predictions.
References
-
Adeshina, A. M., Adeleye, O., & Razak, S. F. A. (2025). Predictive Model for Healthcare Software Defect Severity using Vote Ensemble Learning and Natural Language Processing. J. Internet Serv. Inf. Secur., 15(1), 437-450. https://doi.org/10.58346/JISIS.2025.I1.029
-
Al-Jubouri, N. A. B. (2022). The Role of Humble Leadership Behaviors in Restricting Organizational Silence: An Investigative Study of Faculty Members’ Opinions in the College of Administration and Economics at Tikrit University. International Academic Journal of Organizational Behavior and Human Resource Management, 9(2), 01-13. https://doi.org/10.9756/IAJOBHRM/V9I2/IAJOBHRM0904
-
Arrhenius, O. (1921). Species and area. Journal of Ecology, 9(1), 95-99. https://doi.org/10.2307/2255763
-
Assegid, W., & Ketema, G. (2023). Assessing the Effects of Climate Change on Aquatic Ecosystems. Aquatic Ecosystems and Environmental Frontiers, 1(1), 6-10. https://doi.org/10.1038/nature10425
-
Bhaskaraprasath, S. K., Manibharathi, J., Poovarasan, G., Vignesh, C., & Nagarajan, G. (2023). Automated Bird Species Identification using Audio Signal Processing. International Journal of Advances in Engineering and Emerging Technology, 14(1), 133–136.
-
Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the national academy of sciences, 114(30), E6089-E6096. https://doi.org/10.1073/pnas.1704949114
-
Dijana, Đ., & Jovana, T. M. (2023). Eco Tourism Development Based on Natural and Artificial Surroundings in Semberija and Majevica Area. Archives for Technical Sciences, 1(28), 69-76. https://doi.org/10.59456/afts.2023.1528.069Dj
-
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., & Collen, B. (2014). Defaunation in the Anthropocene. science, 345(6195), 401-406. https://doi.org/10.1126/science.1251817
-
Drakare, S., Lennon, J. J., & Hillebrand, H. (2006). The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology letters, 9(2), 215-227. https://doi.org/10.1111/j.1461-0248.2005.00848.x
-
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual review of ecology, evolution, and systematics, 34(1), 487-515. http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419
-
Fridley, J. D., Peet, R. K., Wentworth, T. R., & White, P. S. (2005). Connecting fine‐and broad‐scale species–area relationships of southeastern US flora. Ecology, 86(5), 1172-1177. https://doi.org/10.1890/03-3187
-
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., ... & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378-381. https://doi.org/10.1038/nature10425
-
Guilhaumon, F., Gimenez, O., Gaston, K. J., & Mouillot, D. (2008). Taxonomic and regional uncertainty in species-area relationships and the identification of richness hotspots. Proceedings of the National Academy of Sciences, 105(40), 15458-15463. https://doi.org/10.1073/pnas.0803610105
-
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science advances, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052
-
Hanski, I., Zurita, G. A., Bellocq, M. I., & Rybicki, J. (2013). Species–fragmented area relationship. Proceedings of the National Academy of Sciences, 110(31), 12715-12720. https://doi.org/10.1073/pnas.1311491110
-
Howes, B., González‐Suárez, M., Jensen, H. J., Anjos, L. D., Develey, P. F., Hatfield, J. H., ... & Banks‐Leite, C. (2023). Deforestation alters species interactions. Natural Sciences, 3(2), e20220027. https://doi.org/10.1002/ntls.20220027
-
KOH*, L. P., & Ghazoul, J. (2010). A matrix‐calibrated species‐area model for predicting biodiversity losses due to land‐use change. Conservation Biology, 24(4), 994-1001. https://doi.org/10.1111/j.1523-1739.2010.01464.x
-
Laurance, W. F., & Peres, C. A. (Eds.). (2006). Emerging threats to tropical forests. University of Chicago Press.
-
MACARTHUR, R. H., & WILSON, E. O. (1967). The Theory of Island Biogeography (REV-Revised). Princeton University Press. http://www.jstor.org/stable/j.ctt19cc1t2
-
Matthews, T. J., Triantis, K. A., & Whittaker, R. J. (Eds.). (2021). The species–area relationship: theory and application. Cambridge University Press. https://doi.org/10.1017/9781108569422
-
Patil, P. J. (2018). An Ecological Analysis of Forest Accounting. Environmental Analysis & Ecology Studies, 4(2), 1-9. http://dx.doi.org/10.31031/EAES.2018.04.000582
-
Patil, R. P., Ingale, A., & Khyade, V. B. (2018). Species of the Ants (Hymenoptera: Formicidae) In the Campus of Nakshatra Garden of Baramati India. International Academic Journal of Science and Engineering, 5(1), 85-96. http://dx.doi.org/10.9756/IAJSE/V5I1/1810008
-
Pimm, S. L., & Askins, R. A. (1995). Forest losses predict bird extinctions in eastern North America. Proceedings of the National Academy of Sciences, 92(20), 9343-9347. https://doi.org/10.1073/pnas.92.20.9343
-
Preston, F. W. (1962). The canonical distribution of commonness and rarity: Part I. Ecology, 43(2), 185-215. https://doi.org/10.2307/1931976
-
Pur, J. T., Multafu, N. K., Mustapha, B., & Mustapha, S. B. (2016). Determinants of diversification of livelihood activities among rural women in Bade local government area of Yobe State, Nigeria. International Academic Journal of social Sciences, 3(9), 50-60. https://doi.org/10.9756/IAJSS/V5I2/18100032
-
Puyravaud, J. P. (2003). Standardizing the calculation of the annual rate of deforestation. Forest ecology and management, 177(1-3), 593-596. https://doi.org/10.1016/S0378-1127(02)00335-3
-
Rosenzweig, M. L. (1995). Species diversity in space and time.
-
Rybicki, J., & Hanski, I. (2013). Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecology letters, 16, 27-38. https://doi.org/10.1111/ele.12065
-
Sreekar, R., Huang, G., Zhao, J. B., Pasion, B. O., Yasuda, M., Zhang, K., ... & Harrison, R. D. (2015). The use of species–area relationships to partition the effects of hunting and deforestation on bird extirpations in a fragmented landscape. Diversity and Distributions, 21(4), 441-450. https://doi.org/10.1111/ddi.12292
-
Unger, S. Exploring malacological observations on iNaturalist: Citizen science as a tool for monitoring freshwater mussels. International Journal of Aquatic Research and Environmental Studies, 0-0. http://doi.org/10.70102/IJARES/V4I2/10
-
Zhong, Liang, Yu, Han, Zhao, Min, Cheng, Shuai, Zhou, Zhiguo, Lu, Rui, Zhu, Wei, & Zhang, Haifeng. (2021). Scale-dependent species–area relationships affected by sampling methods in forest biodiversity assessments. Forests, 12(10), 1365.