Araştırma Makalesi
BibTex RIS Kaynak Göster

Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi

Yıl 2024, Cilt: 6 Sayı: 3

Öz

Bu çalışmada, mikrokarıştırıcıların tasarımı ve performansı üzerine nümerik bir inceleme sunulmuştur. İnceleme, özellikle yüzük tipi elektroosmotik mikrokarıştırıcıların farklı voltaj ve frekanslardaki karıştırma etkinliği ve maliyetleri üzerinde odaklanmıştır. Sonlu elemanlar yöntemiyle yapılan nümerik analizler, karışma performansını belirleyen faktörleri ortaya koymaktadır. Elde edilen sonuçlara göre, mikrokarıştırıcıların tasarımı ve optimize edilmesinde dikkate alınması gereken nümerik bilgileri vurgulanmıştır. Frekansın artışının karışma performansı üzerindeki etkileri incelenmiş ve belirli bir bölgede karışma performansını artırırken, bazı durumlarda negatif etkilere neden olduğu gözlemlenmiştir. Benzer şekilde, voltajın karışma üzerindeki etkileri de detaylı olarak değerlendirilmiş ve doğrudan bir artışın karışma etkinliğini artırdığı belirlenmiştir. Özellikle, geometrik boyutlar, uygulanan gerilim ve frekans gibi parametrelerin karışma performansı üzerinde belirleyici olduğu görülmüştür. 1 ila 5V arası gerilimler ile 4 ve 8Hz frekanslarında analizler gerçekleştirilmiştir. En iyi performans, 4,5V ve 8Hz uygulandığı durumda elde edilmiştir. Bu bağlamda, gelecekteki çalışmalarda, daha karmaşık sistemlerin ve farklı çalışma koşullarının dikkate alınarak daha kapsamlı analizlerin yapılması önerilmektedir.

Kaynakça

  • S. Jeong, J. Park, J.M. Kim, S. Park, Microfluidic mixing using periodically induced secondary potential in electroosmotic flow, Journal of Electrostatics. 69 (2011), 429–434. doi:10.1016/j.elstat.2011.06.001.
  • X. Jia, B. Che, G. Jing, C. Zhang, Air-bubble induced mixing: A fluidic mixer chip, Micromachines. 11 (2020), 1–9. doi:10.3390/mi11020195.
  • P. Modarres, M. Tabrizian, Phase-controlled field-effect micromixing using AC electroosmosis, Microsystems and Nanoengineering. 6 (2020). doi:10.1038/s41378-020-0166-y.
  • K. Du, W. Liu, Y. Ren, T. Jiang, J. Song, Q. Wu, Y. Tao, A high-throughput electrokinetic micromixer via AC field-effect nonlinear electroosmosis control in 3D electrode configurations, Micromachines. 9 (2018). doi:10.3390/mi9090432.
  • G. Cai, L. Xue, H. Zhang, J. Lin, A review on micromixers, Micromachines. 8 (2017). doi:10.3390/mi8090274.
  • S. Dong, P.F. Geng, D. Dong, C.X. Li, Mixing enhancement of electroosmotic flow in microchannels under DC and AC electric field, Journal of Applied Fluid Mechanics. 13 (2020), 79–88. doi:10.29252/jafm.13.01.30063.
  • Y. Ren, W. Liu, Y. Tao, M. Hui, Q. Wu, On AC-field-induced nonlinear electroosmosis next to the sharp corner-field-singularity of leaky dielectric blocks and its application in on-chip micro-mixing, Micromachines. 9 (2018). doi:10.3390/mi9030102.
  • X. Gao, Y. Li, Simultaneous microfluidic pumping and mixing using an array of asymmetric 3D ring electrode pairs in a cylindrical microchannel by the AC electroosmosis effect, European Journal of Mechanics, B/Fluids. 75 (2019), 361–371. doi:10.1016/j.euromechflu.2018.10.008.
  • H.Y. Wu, C.H. Liu, A novel electrokinetic micromixer, Sensors and Actuators, A: Physical. 118 (2005), 107–115. doi:10.1016/j.sna.2004.06.032.
  • Y. Deng, T. Zhou, Z. Liu, Y. Wu, S. Qian, J.G. Korvink, Topology optimization of electrode patterns for electroosmotic micromixer, International Journal of Heat and Mass Transfer. 126 (2018), 1299–1315. doi:10.1016/j.ijheatmasstransfer.2018.06.065.
  • M.B. Okuducu, M.M. Aral, Novel 3-D T-shaped passive micromixer design with Helicoidal Flows, Processes. 7 (2019). doi:10.3390/pr7090637.
  • M. Rafeie, M. Welleweerd, A. Hassanzadeh-Barforoushi, M. Asadnia, W. Olthuis, M.E. Warkiani, An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates, Biomicrofluidics. 11 (2017). doi:10.1063/1.4974904.
  • J. Clark, M. Kaufman, P.S. Fodor, Mixing enhancement in serpentine micromixers with a non-rectangular cross-section, Micromachines. 9 (2018). doi:10.3390/mi9030107.
  • K.-R. Huang, Z.-H. Hong, J.-S. Chang, Microfluidic mixing on application of traveling wave electroosmosis, European Journal of Mechanics B/Fluids. 48 (2014), 153–164. doi:10.1016/j.euromechflu.2014.05.010.
  • W. Raza, S. Hossain, K.Y. Kim, A review of passive micromixers with a comparative analysis, Micromachines. 11 (2020). doi:10.3390/MI11050455.
  • F. Ahmed, K.Y. Kim, Parametric study of an electroosmotic micromixer with heterogeneous charged surface patches, Micromachines. 8 (2017). doi:10.3390/mi8070199.
  • Q. Hu, J. Guo, Z. Cao, H. Jiang, Asymmetrical induced charge electroosmotic flow on a herringbone floating electrode and its application in a micromixer, Micromachines. 9 (2018). doi:10.3390/mi9080391.
  • T. Zhou, H. Wang, L. Shi, Z. Liu, S. Joo, An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure, Micromachines. 7 (2016), 218. doi:10.3390/mi7120218.
  • H. Jalili, M. Raad, D.A. Fallah, Numerical study on the mixing quality of an electroosmotic micromixer under periodic potential, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234 (2020), 2113–2125. doi:10.1177/0954406220904089.
  • Roache, P.J., K. Ghia, and F. White, Editorial Policy Statement on the Control of Numerical Accuracy, ASME Journal of Fluids Engineering, 108 (1986) 2.
  • Shakhawat Hossain, Kwang-Yong Kim, Mixing analysis in a three-dimensional serpentine split-and-recombine micromixer, Chemical Engineering Research & Design, 100 (2015), 95-103.
  • F. Pennella, M. Rossi, S. Ripandelli, M. Rasponi, F. Mastrangelo, M. Deriu, L. Ridolfi, C. Kähler, U. Morbiducci, Numerical and experimental characterization of a novel modular passive micromixer, Biomedical Microdevices, 14 (2012), 849-862.

A Numerical Study of the Mixing Performance of the Electroosmotic Micromixer Design at Different Voltages

Yıl 2024, Cilt: 6 Sayı: 3

Öz

In this study, a numerical investigation on the design and performance of micromixers is presented. The investigation focuses particularly on the mixing efficiency and costs of ring-type electroosmotic micromixers at different voltages and frequencies. Numerical analyses performed using the finite element method reveal the factors that determine mixing performance. According to the obtained results, numerical data that should be considered in the design and optimization of micromixers are highlighted. The effects of increasing frequency on mixing performance were examined, and it was observed that while it enhances mixing performance in a certain range, it can cause negative effects in some cases. Similarly, the effects of voltage on mixing were also evaluated in detail, and it was determined that a direct increase in voltage enhances mixing efficiency. Specifically, parameters such as geometric dimensions, applied voltage, and frequency were found to be decisive on mixing performance. Analyses were conducted at voltages ranging from 1 to 5V and at frequencies of 4 and 8Hz. The best performance was achieved when 4.5V and 8Hz were applied. In this context, it is recommended that future studies consider more complex systems and different operating conditions for more comprehensive analyses.

Kaynakça

  • S. Jeong, J. Park, J.M. Kim, S. Park, Microfluidic mixing using periodically induced secondary potential in electroosmotic flow, Journal of Electrostatics. 69 (2011), 429–434. doi:10.1016/j.elstat.2011.06.001.
  • X. Jia, B. Che, G. Jing, C. Zhang, Air-bubble induced mixing: A fluidic mixer chip, Micromachines. 11 (2020), 1–9. doi:10.3390/mi11020195.
  • P. Modarres, M. Tabrizian, Phase-controlled field-effect micromixing using AC electroosmosis, Microsystems and Nanoengineering. 6 (2020). doi:10.1038/s41378-020-0166-y.
  • K. Du, W. Liu, Y. Ren, T. Jiang, J. Song, Q. Wu, Y. Tao, A high-throughput electrokinetic micromixer via AC field-effect nonlinear electroosmosis control in 3D electrode configurations, Micromachines. 9 (2018). doi:10.3390/mi9090432.
  • G. Cai, L. Xue, H. Zhang, J. Lin, A review on micromixers, Micromachines. 8 (2017). doi:10.3390/mi8090274.
  • S. Dong, P.F. Geng, D. Dong, C.X. Li, Mixing enhancement of electroosmotic flow in microchannels under DC and AC electric field, Journal of Applied Fluid Mechanics. 13 (2020), 79–88. doi:10.29252/jafm.13.01.30063.
  • Y. Ren, W. Liu, Y. Tao, M. Hui, Q. Wu, On AC-field-induced nonlinear electroosmosis next to the sharp corner-field-singularity of leaky dielectric blocks and its application in on-chip micro-mixing, Micromachines. 9 (2018). doi:10.3390/mi9030102.
  • X. Gao, Y. Li, Simultaneous microfluidic pumping and mixing using an array of asymmetric 3D ring electrode pairs in a cylindrical microchannel by the AC electroosmosis effect, European Journal of Mechanics, B/Fluids. 75 (2019), 361–371. doi:10.1016/j.euromechflu.2018.10.008.
  • H.Y. Wu, C.H. Liu, A novel electrokinetic micromixer, Sensors and Actuators, A: Physical. 118 (2005), 107–115. doi:10.1016/j.sna.2004.06.032.
  • Y. Deng, T. Zhou, Z. Liu, Y. Wu, S. Qian, J.G. Korvink, Topology optimization of electrode patterns for electroosmotic micromixer, International Journal of Heat and Mass Transfer. 126 (2018), 1299–1315. doi:10.1016/j.ijheatmasstransfer.2018.06.065.
  • M.B. Okuducu, M.M. Aral, Novel 3-D T-shaped passive micromixer design with Helicoidal Flows, Processes. 7 (2019). doi:10.3390/pr7090637.
  • M. Rafeie, M. Welleweerd, A. Hassanzadeh-Barforoushi, M. Asadnia, W. Olthuis, M.E. Warkiani, An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates, Biomicrofluidics. 11 (2017). doi:10.1063/1.4974904.
  • J. Clark, M. Kaufman, P.S. Fodor, Mixing enhancement in serpentine micromixers with a non-rectangular cross-section, Micromachines. 9 (2018). doi:10.3390/mi9030107.
  • K.-R. Huang, Z.-H. Hong, J.-S. Chang, Microfluidic mixing on application of traveling wave electroosmosis, European Journal of Mechanics B/Fluids. 48 (2014), 153–164. doi:10.1016/j.euromechflu.2014.05.010.
  • W. Raza, S. Hossain, K.Y. Kim, A review of passive micromixers with a comparative analysis, Micromachines. 11 (2020). doi:10.3390/MI11050455.
  • F. Ahmed, K.Y. Kim, Parametric study of an electroosmotic micromixer with heterogeneous charged surface patches, Micromachines. 8 (2017). doi:10.3390/mi8070199.
  • Q. Hu, J. Guo, Z. Cao, H. Jiang, Asymmetrical induced charge electroosmotic flow on a herringbone floating electrode and its application in a micromixer, Micromachines. 9 (2018). doi:10.3390/mi9080391.
  • T. Zhou, H. Wang, L. Shi, Z. Liu, S. Joo, An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure, Micromachines. 7 (2016), 218. doi:10.3390/mi7120218.
  • H. Jalili, M. Raad, D.A. Fallah, Numerical study on the mixing quality of an electroosmotic micromixer under periodic potential, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234 (2020), 2113–2125. doi:10.1177/0954406220904089.
  • Roache, P.J., K. Ghia, and F. White, Editorial Policy Statement on the Control of Numerical Accuracy, ASME Journal of Fluids Engineering, 108 (1986) 2.
  • Shakhawat Hossain, Kwang-Yong Kim, Mixing analysis in a three-dimensional serpentine split-and-recombine micromixer, Chemical Engineering Research & Design, 100 (2015), 95-103.
  • F. Pennella, M. Rossi, S. Ripandelli, M. Rasponi, F. Mastrangelo, M. Deriu, L. Ridolfi, C. Kähler, U. Morbiducci, Numerical and experimental characterization of a novel modular passive micromixer, Biomedical Microdevices, 14 (2012), 849-862.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mikroakışkanlar ve Nanoakışkanlar
Bölüm Makaleler
Yazarlar

Sinan Yiğit 0000-0001-6892-1269

Mehmet Berk Azdural 0000-0001-9154-3497

Ali Kahraman 0000-0002-5598-5017

Erken Görünüm Tarihi 9 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 10 Mart 2024
Kabul Tarihi 26 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 3

Kaynak Göster

APA Yiğit, S., Azdural, M. B., & Kahraman, A. (2024). Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(3).
AMA Yiğit S, Azdural MB, Kahraman A. Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi. NEU Fen Muh Bil Der. Aralık 2024;6(3).
Chicago Yiğit, Sinan, Mehmet Berk Azdural, ve Ali Kahraman. “Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, sy. 3 (Aralık 2024).
EndNote Yiğit S, Azdural MB, Kahraman A (01 Aralık 2024) Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 3
IEEE S. Yiğit, M. B. Azdural, ve A. Kahraman, “Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi”, NEU Fen Muh Bil Der, c. 6, sy. 3, 2024.
ISNAD Yiğit, Sinan vd. “Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/3 (Aralık 2024).
JAMA Yiğit S, Azdural MB, Kahraman A. Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi. NEU Fen Muh Bil Der. 2024;6.
MLA Yiğit, Sinan vd. “Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 6, sy. 3, 2024.
Vancouver Yiğit S, Azdural MB, Kahraman A. Özgün Elektroosmotik Mikrokarıştıcı Tasarımının Farklı Voltajlardaki Karıştırma Performansının Nümerik İncelemesi. NEU Fen Muh Bil Der. 2024;6(3).


32206                   17157           17158