Araştırma Makalesi
BibTex RIS Kaynak Göster

Torna talaşı atıklarından demir oksit esaslı aerojel tozu üretimi ve karakterizasyonu

Yıl 2024, , 665 - 671, 15.04.2024
https://doi.org/10.28948/ngumuh.1409401

Öz

Mevcut çalışmada metal oksit aerojeller grubunun bir üyesi konumunda olan demir oksit aerojellerin torna talaşı atıklarından üretilebilirliği incelenmiştir. Bu amaçla halkalı değirmende öğütülerek ince taneli boyuta getirilmiş torna talaş atıkları, asitte çözdürülüp baz ile nötralize edilmiş ve jelleşmeye bırakılmıştır. Jelleşme süreci sonunda jel kaynar saf ile yıkanarak demir oksit esaslı aerojel tozu elde edilmiştir. Elde edilen demir oksit aerojel tozunun XRD ile faz analizi, SEM ve EDS görüntüleri ile mikroyapı analizi, Zeta potansiyeli ile ortalama tane boyut ve potansiyel aralıkları ve FTIR ile bağ yapıları karakterize edilmiştir.

Kaynakça

  • A. Ghanbariasad, S. M. Taghizadeh, P. L. Show, S. Nomanbhay, A. Berenjian, Y. Ghasemi and A. Ebrahiminezhad, Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from Chlorella vulgaris microalgae. Bioengineered, 10 (1), 390-396, 2019. https:// doi.org/10.1080/21655979.2019.1661692.
  • M. Mohapatra and S. Anand, Synthesis and applications of nano-structured iron oxides/hydroxides a review. International Journal of Engineeering Science and Technology, 2 (8), 127-146, 2011. htpss://doi.org/ 10.4314/ijest.v2i8.63846.
  • M. H. Khedr, K. S. A. Halim and N. K. Soliman, Synthesis and photocatalytic activity of nano-sized iron oxides. Materials Letters, 63 (6-7), 598-601, 2009. https://doi.org/10.3390/ijms161024174.
  • A. Jaiswal, S. Banerjee, R. Mani and M. C. Chattopadhyaya, Journal of environmental chemical engineering synthesis, characterization and application of goethite mineral as an adsorbent. Biochemical Pharmacology, 1 (3), 281-289, 2013. htpss://doi.org/ 10.1016/j.jece.2013.05.007.
  • M. Roberts, P. Srivastava, G. Webster, A. J. Weightman and D. J. Sapsford, Biostimulation of jarosite and Iron Oxide-bearing mine waste enhances subsequent metal recovery. Journal of Hazardous Materials, 445, 130498, 2022. https://doi.org/10.1016/ j.jhazmat.2022. 130498.
  • M. A. Legodi and D. De Waal, The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments, 74 (1), 161-168 2007. https://doi.org/ 10.1016/j.dyepig.2006.01.038.
  • M. Raffaella, L. Zoli and E. Sani, Synthesis and characterization of goethite (α-FeOOH) magnetic nanofluids. International Journal of Thermofluids, 15, 100169, 2022. https://doi.org/10.1016/j.dyepig.2006. 01.038.
  • M. Zhao, C. Liu, F. Liu, D. Jing, Y. Dong, L. Wang and L. Ren, Adhesion effect and mechanism of siderophore-producing bacteria onto goethite and boron-doped goethite. Colloids and Interface Science Communication, 51, 100680, 2022. https://doi.org/ 10.1016/j.colcom.2022.100680.
  • M. Arakha, S. Pal, D. Samantarrai, T. K. Panigrahi, B. C. Mallick, K. Pramanik, B. Mallick and S. Jha, Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 5, 14813, 1-12, 2015. https:// doi.org/10.1038/srep14813.
  • T. R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones and S. Jin, Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials, 28 (16), 2572-2581, 2007. htpps:// doi.org/10.1016/j.biomaterials.2007.01.043.
  • H. Wu, J. J. Yin, W. G. Wamer, M. Zeng and Y. M. Lo, Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis, 22 (1), 86-94, 2014. https://doi.org/10.1016/ j.jfda.2014.01.007.
  • S. Saqib, M. F. H. Munis, W. Zaman, F. Ullah, S. N. Shah, A. Ayaz, M. Farooq and S. Bahadur, Synthesis characterization and use of iron oxide nano particles for antibacterial activity. Microscopy Research and Technique, 82 (4), 415-420, 2018. https://doi.org/10.1002/jemt.23182.
  • J. Alonso, J. R. Gallego, M. C. Lobo, M. Gil-díaz and D. Baraga, Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere, 238, 124624 2020. https://doi.org/10.1016/j.chemosphere.2019.124624.
  • W. Li and X. Liu, Applied geochemistry systematic investigations on iron cycling in phosphorus/ siderophore systems: Synergism or antagonism?. Applied Geochemistry, 124, 104796, 2021. https:// doi.org/10.1016/j.apgeochem.2020.104796.
  • J. K. Yoo, H. J. Kong, R. Wagle, B. H. Shon, I. K. Kim and T. H. Kim, A study on the methods for making iron oxide aerogel. Journal of Industrial and Engineering Chemistry, 72, 332-337, 2019. https://doi.org/10.1016/ j.jiec.2018.12.033.
  • F. E. Huggins, S. Bali, G. P. Huffman and E. M. Eyring, Iron-oxide aerogel and xerogel catalyst formulations: Characterization by 57Fe Mössbauer and XAFS spectroscopies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (1), 74-83, 2010. https://doi.org/10.1016/j.saa.2010.02.049.
  • A. Tav, Y. Oz and H. I. Akyildiz, Formation and thermo-physical properties of aerogel ceramic blanket composites synthesized via scalable atmospheric pressure process with methyltrimethoxysilane precursor. Journal of Porous Materials, 31(1), 317-334, 2023. https://doi.org/10.1007/s10934-023-01521-4.
  • A. Khaleel and A. Al-Marzouqi, Alkoxide-free sol-gel synthesis of aerogel iron-chromium mixed oxides with unique textural properties. Materials Letters, 68, 385-387, 2012. https://doi.org/10.1016/j.matlet.2011.11.
  • A. Tav, Y. Öz and H. İ. Akyıldız, Thermal and mechanical properties of sol-gel silica coated fabrics. Avrupa Bilim ve Teknoloji Dergisi. 31, 309-319, 2021. https:// doi.org/10.31590/ejosat.1000774.
  • Ş. Ş. Koçer, Alümina esaslı hammadde ve atıklardan alümina esaslı aerojel tozu üretimi ve karakterizasyonu. Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2019.
  • R. Arslan, G. Eğribel, E. Mudam and N. Toplan, Preparation of silica aerogel by ambient pressure drying process using diatomite powder. 19. Uluslararası Metalurji ve Malzeme Kongresi (IMMC2018), sayfa 614-617, İstanbul, Türkiye, 25-27 Ekim 2018.
  • K.N. Maamur, U. S. Jais and S. Y. S. Yahya., Magnetic phase development of iron oxide‐SiO2 aerogel and xerogel prepared using rice husk ash as precursor. AIP Conference Proceedings. 1217 (1), 2010, https:// doi.org/10.1063/1.3377832.
  • J. W. Jeffrey, M. S. Logan, C. P. Rhodes, E. E. Carpenter, R. M. Stroud and D. R. Rolison, Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. Journal of the American Chemical Society, 126 (51), 16879-16889, 2004. https://doi.org/10.1021/ja046044f.
  • E. M. Moreno, M. Zayat, M. P. Morales, C.J. Serna, A. Roig and D. Levy, Preparation of narrow size distribution superparamagnetic γ-Fe2O3 nanoparticles in a sol-gel transparent SiO2 matrix. Langmuir, 18 (12), 4972-4978, 2002. https://doi.org/10.1021/la020037s.
  • H. Cui, W. Ren, P. Lin and Y. Liu, Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. Journal of Experimental Nanoscience, 8 (7-8), 869-875, 2013. https://doi.org/10.1080/17458080.2011.616541.
  • D. Vernekar and D. Jagadeesan, Tunable acid-base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction. Catalysis Science and Technology, 5 (8), 4029-4038, 2015. https://doi.org/ 10.1039/C5CY00361J.
  • N. H. Dang, T. H. Tu, V. N. P. Linh, L. T. M. Thy, H. M. Nam, M. T. Phong and N.H. Hieu, Preparation of magnetic iron oxide/graphene aerogel nanocomposites for removal of bisphenol A from water. Synthetic Metals, 255, 116-106, 2019. https://doi.org/10.1016/ j.synthmet.2019.116106.
  • L.Tankosić, P.Tančić, S.Sredić and Z. Nedić, Comparative study of the mineral composition and its connection with some properties important for the sludge flocculation process-examples from Omarska Mine. Minerals, 8 (3), 119, 2018. https://doi.org/10. 3390/min8030119.
  • K. Shrimali, J. Jin, B.V. Hassas, X.Wang and J.D. Miller, The surface state of hematite and its wetting characteristics. Journal of colloid and interface science, 477, 16-24, 2016. https://doi.org/10.1016/ j.jcis.2016.05.030.
  • J. Balachandramohan, M. Kumar, T. Sivasankar and M. Sivakumar, Natural Polymer-Based Iron Oxide (Fe3O4) synthesis, characterization and Its application for 1-Amino-Nitrobenzene degradation in assistance with oxidants. Catalysts, 12(10), 1161, 2022. https://doi.org/ 10.3390/catal12101161.

Production and characterization of iron oxide based aerogel from steel sawdust waste

Yıl 2024, , 665 - 671, 15.04.2024
https://doi.org/10.28948/ngumuh.1409401

Öz

In the present study, the producibility of iron oxide aerogels, which is a member of the metal oxide aerogels group, from lathe waste was investigated. For this purpose, lathe sawdust wastes, which were ground in a ring mill and made fine-grained, were dissolved in acid, neutralized with base and left to gel. At the end of the gelation process, iron oxide aerogel powder was obtained by washing the gel with boiling distilled water. The iron oxide aerogel powder was analyzed for phase, microstructure, average grain size, potential ranges, and bond structures using XRD, SEM and EDS images, Zeta potential, and FTIR, respectively.

Kaynakça

  • A. Ghanbariasad, S. M. Taghizadeh, P. L. Show, S. Nomanbhay, A. Berenjian, Y. Ghasemi and A. Ebrahiminezhad, Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from Chlorella vulgaris microalgae. Bioengineered, 10 (1), 390-396, 2019. https:// doi.org/10.1080/21655979.2019.1661692.
  • M. Mohapatra and S. Anand, Synthesis and applications of nano-structured iron oxides/hydroxides a review. International Journal of Engineeering Science and Technology, 2 (8), 127-146, 2011. htpss://doi.org/ 10.4314/ijest.v2i8.63846.
  • M. H. Khedr, K. S. A. Halim and N. K. Soliman, Synthesis and photocatalytic activity of nano-sized iron oxides. Materials Letters, 63 (6-7), 598-601, 2009. https://doi.org/10.3390/ijms161024174.
  • A. Jaiswal, S. Banerjee, R. Mani and M. C. Chattopadhyaya, Journal of environmental chemical engineering synthesis, characterization and application of goethite mineral as an adsorbent. Biochemical Pharmacology, 1 (3), 281-289, 2013. htpss://doi.org/ 10.1016/j.jece.2013.05.007.
  • M. Roberts, P. Srivastava, G. Webster, A. J. Weightman and D. J. Sapsford, Biostimulation of jarosite and Iron Oxide-bearing mine waste enhances subsequent metal recovery. Journal of Hazardous Materials, 445, 130498, 2022. https://doi.org/10.1016/ j.jhazmat.2022. 130498.
  • M. A. Legodi and D. De Waal, The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments, 74 (1), 161-168 2007. https://doi.org/ 10.1016/j.dyepig.2006.01.038.
  • M. Raffaella, L. Zoli and E. Sani, Synthesis and characterization of goethite (α-FeOOH) magnetic nanofluids. International Journal of Thermofluids, 15, 100169, 2022. https://doi.org/10.1016/j.dyepig.2006. 01.038.
  • M. Zhao, C. Liu, F. Liu, D. Jing, Y. Dong, L. Wang and L. Ren, Adhesion effect and mechanism of siderophore-producing bacteria onto goethite and boron-doped goethite. Colloids and Interface Science Communication, 51, 100680, 2022. https://doi.org/ 10.1016/j.colcom.2022.100680.
  • M. Arakha, S. Pal, D. Samantarrai, T. K. Panigrahi, B. C. Mallick, K. Pramanik, B. Mallick and S. Jha, Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 5, 14813, 1-12, 2015. https:// doi.org/10.1038/srep14813.
  • T. R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones and S. Jin, Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials, 28 (16), 2572-2581, 2007. htpps:// doi.org/10.1016/j.biomaterials.2007.01.043.
  • H. Wu, J. J. Yin, W. G. Wamer, M. Zeng and Y. M. Lo, Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis, 22 (1), 86-94, 2014. https://doi.org/10.1016/ j.jfda.2014.01.007.
  • S. Saqib, M. F. H. Munis, W. Zaman, F. Ullah, S. N. Shah, A. Ayaz, M. Farooq and S. Bahadur, Synthesis characterization and use of iron oxide nano particles for antibacterial activity. Microscopy Research and Technique, 82 (4), 415-420, 2018. https://doi.org/10.1002/jemt.23182.
  • J. Alonso, J. R. Gallego, M. C. Lobo, M. Gil-díaz and D. Baraga, Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere, 238, 124624 2020. https://doi.org/10.1016/j.chemosphere.2019.124624.
  • W. Li and X. Liu, Applied geochemistry systematic investigations on iron cycling in phosphorus/ siderophore systems: Synergism or antagonism?. Applied Geochemistry, 124, 104796, 2021. https:// doi.org/10.1016/j.apgeochem.2020.104796.
  • J. K. Yoo, H. J. Kong, R. Wagle, B. H. Shon, I. K. Kim and T. H. Kim, A study on the methods for making iron oxide aerogel. Journal of Industrial and Engineering Chemistry, 72, 332-337, 2019. https://doi.org/10.1016/ j.jiec.2018.12.033.
  • F. E. Huggins, S. Bali, G. P. Huffman and E. M. Eyring, Iron-oxide aerogel and xerogel catalyst formulations: Characterization by 57Fe Mössbauer and XAFS spectroscopies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (1), 74-83, 2010. https://doi.org/10.1016/j.saa.2010.02.049.
  • A. Tav, Y. Oz and H. I. Akyildiz, Formation and thermo-physical properties of aerogel ceramic blanket composites synthesized via scalable atmospheric pressure process with methyltrimethoxysilane precursor. Journal of Porous Materials, 31(1), 317-334, 2023. https://doi.org/10.1007/s10934-023-01521-4.
  • A. Khaleel and A. Al-Marzouqi, Alkoxide-free sol-gel synthesis of aerogel iron-chromium mixed oxides with unique textural properties. Materials Letters, 68, 385-387, 2012. https://doi.org/10.1016/j.matlet.2011.11.
  • A. Tav, Y. Öz and H. İ. Akyıldız, Thermal and mechanical properties of sol-gel silica coated fabrics. Avrupa Bilim ve Teknoloji Dergisi. 31, 309-319, 2021. https:// doi.org/10.31590/ejosat.1000774.
  • Ş. Ş. Koçer, Alümina esaslı hammadde ve atıklardan alümina esaslı aerojel tozu üretimi ve karakterizasyonu. Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2019.
  • R. Arslan, G. Eğribel, E. Mudam and N. Toplan, Preparation of silica aerogel by ambient pressure drying process using diatomite powder. 19. Uluslararası Metalurji ve Malzeme Kongresi (IMMC2018), sayfa 614-617, İstanbul, Türkiye, 25-27 Ekim 2018.
  • K.N. Maamur, U. S. Jais and S. Y. S. Yahya., Magnetic phase development of iron oxide‐SiO2 aerogel and xerogel prepared using rice husk ash as precursor. AIP Conference Proceedings. 1217 (1), 2010, https:// doi.org/10.1063/1.3377832.
  • J. W. Jeffrey, M. S. Logan, C. P. Rhodes, E. E. Carpenter, R. M. Stroud and D. R. Rolison, Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. Journal of the American Chemical Society, 126 (51), 16879-16889, 2004. https://doi.org/10.1021/ja046044f.
  • E. M. Moreno, M. Zayat, M. P. Morales, C.J. Serna, A. Roig and D. Levy, Preparation of narrow size distribution superparamagnetic γ-Fe2O3 nanoparticles in a sol-gel transparent SiO2 matrix. Langmuir, 18 (12), 4972-4978, 2002. https://doi.org/10.1021/la020037s.
  • H. Cui, W. Ren, P. Lin and Y. Liu, Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. Journal of Experimental Nanoscience, 8 (7-8), 869-875, 2013. https://doi.org/10.1080/17458080.2011.616541.
  • D. Vernekar and D. Jagadeesan, Tunable acid-base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction. Catalysis Science and Technology, 5 (8), 4029-4038, 2015. https://doi.org/ 10.1039/C5CY00361J.
  • N. H. Dang, T. H. Tu, V. N. P. Linh, L. T. M. Thy, H. M. Nam, M. T. Phong and N.H. Hieu, Preparation of magnetic iron oxide/graphene aerogel nanocomposites for removal of bisphenol A from water. Synthetic Metals, 255, 116-106, 2019. https://doi.org/10.1016/ j.synthmet.2019.116106.
  • L.Tankosić, P.Tančić, S.Sredić and Z. Nedić, Comparative study of the mineral composition and its connection with some properties important for the sludge flocculation process-examples from Omarska Mine. Minerals, 8 (3), 119, 2018. https://doi.org/10. 3390/min8030119.
  • K. Shrimali, J. Jin, B.V. Hassas, X.Wang and J.D. Miller, The surface state of hematite and its wetting characteristics. Journal of colloid and interface science, 477, 16-24, 2016. https://doi.org/10.1016/ j.jcis.2016.05.030.
  • J. Balachandramohan, M. Kumar, T. Sivasankar and M. Sivakumar, Natural Polymer-Based Iron Oxide (Fe3O4) synthesis, characterization and Its application for 1-Amino-Nitrobenzene degradation in assistance with oxidants. Catalysts, 12(10), 1161, 2022. https://doi.org/ 10.3390/catal12101161.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm, Malzeme Mühendisliğinde Seramik
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Furkan Coşkun 0009-0008-1927-725X

Melih Tümer 0000-0002-6918-0447

Zafer Yavuz Merkit 0000-0002-5549-5229

Hüseyin Özkan Toplan 0000-0002-3928-2733

Nil Toplan 0000-0003-4130-0002

Erken Görünüm Tarihi 14 Mart 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 4 Ocak 2024
Kabul Tarihi 27 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Coşkun, A. F., Tümer, M., Merkit, Z. Y., Toplan, H. Ö., vd. (2024). Torna talaşı atıklarından demir oksit esaslı aerojel tozu üretimi ve karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 665-671. https://doi.org/10.28948/ngumuh.1409401
AMA Coşkun AF, Tümer M, Merkit ZY, Toplan HÖ, Toplan N. Torna talaşı atıklarından demir oksit esaslı aerojel tozu üretimi ve karakterizasyonu. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):665-671. doi:10.28948/ngumuh.1409401
Chicago Coşkun, Ahmet Furkan, Melih Tümer, Zafer Yavuz Merkit, Hüseyin Özkan Toplan, ve Nil Toplan. “Torna talaşı atıklarından Demir Oksit Esaslı Aerojel Tozu üretimi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 665-71. https://doi.org/10.28948/ngumuh.1409401.
EndNote Coşkun AF, Tümer M, Merkit ZY, Toplan HÖ, Toplan N (01 Nisan 2024) Torna talaşı atıklarından demir oksit esaslı aerojel tozu üretimi ve karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 665–671.
IEEE A. F. Coşkun, M. Tümer, Z. Y. Merkit, H. Ö. Toplan, ve N. Toplan, “Torna talaşı atıklarından demir oksit esaslı aerojel tozu üretimi ve karakterizasyonu”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 665–671, 2024, doi: 10.28948/ngumuh.1409401.
ISNAD Coşkun, Ahmet Furkan vd. “Torna talaşı atıklarından Demir Oksit Esaslı Aerojel Tozu üretimi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 665-671. https://doi.org/10.28948/ngumuh.1409401.
JAMA Coşkun AF, Tümer M, Merkit ZY, Toplan HÖ, Toplan N. Torna talaşı atıklarından demir oksit esaslı aerojel tozu üretimi ve karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2024;13:665–671.
MLA Coşkun, Ahmet Furkan vd. “Torna talaşı atıklarından Demir Oksit Esaslı Aerojel Tozu üretimi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 665-71, doi:10.28948/ngumuh.1409401.
Vancouver Coşkun AF, Tümer M, Merkit ZY, Toplan HÖ, Toplan N. Torna talaşı atıklarından demir oksit esaslı aerojel tozu üretimi ve karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2024;13(2):665-71.

download