Araştırma Makalesi
BibTex RIS Kaynak Göster

BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ

Yıl 2018, , 808 - 816, 20.07.2018
https://doi.org/10.28948/ngumuh.445242

Öz

Yeraltı
suyunun madencilik faaliyetlerinden kazı faaliyetlerinden kazı ve tahkimat
sistemlerine doğrudan etkisi bulunmaktadır. Bu nedenle kaya kütle
permeabilitesinin araştırılması ve incelenmesine ihtiyaç duyulmaktadır. Lugeon
testi bir kaya kütlesinin permeabilitesinin ölçülmesinde kullanılan yerinde
deneylerden biridir. Süreksizliklerin konumu, sıklığı, açıklığı, yüzey
kalitesi, dolgu varlığı ve tipi kaya kütlesinin geçirgenliğinde önemli rol
oynar. Yaygın olarak kullanılan RQD (Kaya Kalite Göstergesi) ve Dc (RMR
sisteminin süreksizlik durum puanı) kaya kütlesinin permeabilitesinin
kestiriminde kullanılmak üzere seçilmiştir. Buna ek olarak süreksizliklerin
birbirine olan temasını doğrudan etkileyen arazi gerilmesi, derinlik dikkate
alınarak kestirim çalışmalarına dâhil edilmiştir. Kaya kütlesinin
permeabilitesi karmaşık bir mekanizmaya sahip olduğu öngörülerek, çoklu
regresyon yöntemi kaya kütle parametreleri ile Lugeon değerinin
ilişkilendirilmesinde kullanılmıştır. Sunulan eşitlikler benzer saha
koşullarında kullanılabilse de arazi testlerinin temel alınması gerektiği
hatırlanmalıdır.

Kaynakça

  • [1] AYDAN, Ö., ULUSAY, R., & TOKASHİKİ, N. “A new rock mass quality rating system: rock mass quality rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses” Rock mechanics and rock engineering, 47(4), 1255-1276, 2014.
  • [2] SİNGH, T. D., & SİNGH, B. “Elsevier Geo-Engineering Book 5: Tunnelling In Weak Rocks (Vol. 5)”, Elsevier, 2006.
  • [3] FOYO, A., SÁNCHEZ, M. A., & TOMİLLO, C., “A proposal for a secondary permeability index obtained from water pressure tests in dam foundations”, Engineering geology, 77(1), 69-82, 2005.
  • [4] KARAGÜZEL, R., & KİLİC, R., “The effect of the alteration degree of ophiolitic melange on permeability and grouting”, Engineering geology, 57(1), 1-12, 2000.
  • [5] REN, F., MA, G., FU, G., & ZHANG, K, “Investigation of the permeability anisotropy of 2D fractured rock masses”, Engineering Geology, 196, 171-182, 2015.
  • [6] FELL, R., MACGREGOR, P., STAPLEDON, D., BELL, G. “Geotechnical engineering of dams”, CRC Press., 2005.
  • [7] ERYİLMAZ, G. T., KORKMAZ, S., “Kuyu ve Akifer Testlerine Uygulanan Analitik ve Sayısal Yöntemlerle Hidrolik İletkenliğin Belirlenmesi”, Teknik Dergi, 26(126), 2015.
  • [8] ZLOTNLK, V. A., & MCGUİRE, V. L., “Multi-level slug tests in highly permeable formations: 2. Hydraulic conductivity identification, method verification, and field applications”, Journal of Hydrology, 204(1-4), 283-296, 1998.
  • [9] SNOW, D.T., “Anisotropie permeability of fractured media”, Water Resources Research, 5(6), 1273-1289, 1969.
  • [10] SNOW, D.T., “The frequency and apertures of fractures in rock”, In International journal of Rock mechanics and Mining sciences & Geomechanics Abstracts (Vol. 7, No. 1, pp. 23IN131-30IN240). Pergamon, 1970.
  • [11] ODA, M., HATSUYAMA, Y., & OHNİSHİ, Y. “Numerical experiments on permeability tensor and its application to jointed granite at Stripa mine, Sweden”, Journal of Geophysical Research: Solid Earth, 92(B8), 8037-8048, 1987.
  • [12] NAPPİ, M., ESPOSİTO, L., PİSCOPO, V., & REGA, G. “Hydraulic characterisation of some arenaceous rocks of Molise (Southern Italy) through outcropping measurements and Lugeon tests”, Engineering geology, 81(1), 54-64, 2005.
  • [13] ZHOU, C. B., SHARMA, R. S., CHEN, Y. F., & RONG, G., “Flow–stress coupled permeability tensor for fractured rock masses”, International Journal for Numerical and Analytical Methods in Geomechanics, 32(11), 1289-1309, 2008.
  • [14] RONG, G., PENG, J., WANG, X., LİU, G., & HOU, D., “Permeability tensor and representative elementary volume of fractured rock masses”, Hydrogeology journal, 21(7), 1655-1671, 2013.
  • [15] KAYABASİ, A., YESİLOGLU-GULTEKİN, N., & GOKCEOGLU, C., “Use of non-linear prediction tools to assess rock mass permeability using various discontinuity parameters”, Engineering Geology, 185, 1-9, 2015.
  • [16] SONMEZ, H., & ULUSAY, R., “Modifications to the geological strength index (GSI) and their applicability to stability of slopes” International Journal of Rock Mechanics and Mining Sciences, 36(6), 743-760, 1999.
  • [17] ASSARİ, A., & MOHAMMADİ, Z., “Analysis of rock quality designation (RQD) and Lugeon values in a karstic formation using the sequential indicator simulation approach, Karun IV Dam site, Iran”, Bulletin of Engineering Geology and the Environment, 76(2), 771-782, 2017.
  • [18] HUNT, R. E., “Geotechnical engineering investigation handbook” Crc Press, 2005.
  • [19] LUGEON, M., “Barrage et Géologie”, Dunod, Paris, 1933.
  • [20] QUİÑONES-ROZO, C., “Lugeon test interpretation, revisited”, Collaborative Management of Integrated Watersheds, US Society of Dams, 30th Annual Conference, pp. 405–414, 2010.
  • [21] DEERE, D. U., HENDRON, A. J., PATTON, F. D., & CORDİNG, E. J., “Design of surface and near-surface construction in rock”, The 8th US symposium on rock mechanics (USRMS). American Rock Mechanics Association, 1966.
  • [22] PALMSTROM, A., “Measurements of and correlations between block size and rock quality designation (RQD)”, Tunnelling and Underground Space Technology, 20(4), 362-377, 2005.
  • [23] BİENİAWSKİ, Z. T., “Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering”, John Wiley & Sons, 1989.
  • [24] BASARİR, H., OGE, I. F., & AYDİN, O., “Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis”, International Journal of Rock Mechanics and Mining Sciences, 76, 88-97, 2015.
  • [25] AKSOY, C. O., KUCUK, K., & UYAR, G. G., “Long-term time-dependent consolidation analysis by numerical modelling to determine subsidence effect area induced by longwall top coal caving method”, International Journal of Oil, Gas and Coal Technology, 12(1), 18-37, 2016.
  • [26] TÜYSÜZ, O., GENÇ, Ş.C., Polyak Eynez (Elmadere) Linyit Sahası Jeolojisi, 2013.
  • [27] BRİNKMANN, R., & FEİST, R., “Soma dağlarının jeolojisi”, Maden Tetkik ve Arama Dergisi, 74(74), 1970.
  • [28] NEBERT, K., “Lignite bearing Soma Neogene area, western Turkey”, Bulletin of Directorate of Mineral Research and Exploration, 90, 20-70, 1978.
  • [29] AKSOY, C. O., KOSE, H., ONARGAN, T., KOCA, Y., & HEASLEY, K., “Estimation of limit angle using laminated displacement discontinuity analysis in the Soma coal field, Western Turkey”, International Journal of Rock Mechanics and Mining Sciences, 41(4), 547-556, 2004.
  • [30] BASARİR, H., TUTLUOGLU, L., & KARPUZ, C., “Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple regressions”. Engineering Geology, 173, 1-9, 2014.

ESTIMATION OF ROCK MASS PERMEABILITY IN A MINE SITE BY USING MULTIPLE REGRESSION METHOD

Yıl 2018, , 808 - 816, 20.07.2018
https://doi.org/10.28948/ngumuh.445242

Öz

Groundwater
has a direct impact on the excavation operations and support systems of
underground mining activities. Therefore, it is necessary to investigate the
rock mass permeability. Lugeon test is one of the in-situ tests being used for
measurement of the rock mass permeability. Discontinuity orientation, spacing,
aperture, surface quality, the presence and type of filling play important role
in the permeability of the rock mass. Commonly used parameters, RQD (Rock
Quality Designation) and Dc (Discontinuity Condition Rating of the RMR) were
selected for prediction of the rock mass permeability. Additionally, the field
stress directly influencing the interlocking of the discontinuities is taken
into account in terms of depth and included in the predictions. Foreseeing that
the rock mass permeability has a complex mechanism, multiple regression methods
were employed in order to relate rock mass parameters with Lugeon value.
Although the presented equations can be used in similar field conditions, it
must be recalled that the in-situ testing remains to establish a basis for the investigations.

Kaynakça

  • [1] AYDAN, Ö., ULUSAY, R., & TOKASHİKİ, N. “A new rock mass quality rating system: rock mass quality rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses” Rock mechanics and rock engineering, 47(4), 1255-1276, 2014.
  • [2] SİNGH, T. D., & SİNGH, B. “Elsevier Geo-Engineering Book 5: Tunnelling In Weak Rocks (Vol. 5)”, Elsevier, 2006.
  • [3] FOYO, A., SÁNCHEZ, M. A., & TOMİLLO, C., “A proposal for a secondary permeability index obtained from water pressure tests in dam foundations”, Engineering geology, 77(1), 69-82, 2005.
  • [4] KARAGÜZEL, R., & KİLİC, R., “The effect of the alteration degree of ophiolitic melange on permeability and grouting”, Engineering geology, 57(1), 1-12, 2000.
  • [5] REN, F., MA, G., FU, G., & ZHANG, K, “Investigation of the permeability anisotropy of 2D fractured rock masses”, Engineering Geology, 196, 171-182, 2015.
  • [6] FELL, R., MACGREGOR, P., STAPLEDON, D., BELL, G. “Geotechnical engineering of dams”, CRC Press., 2005.
  • [7] ERYİLMAZ, G. T., KORKMAZ, S., “Kuyu ve Akifer Testlerine Uygulanan Analitik ve Sayısal Yöntemlerle Hidrolik İletkenliğin Belirlenmesi”, Teknik Dergi, 26(126), 2015.
  • [8] ZLOTNLK, V. A., & MCGUİRE, V. L., “Multi-level slug tests in highly permeable formations: 2. Hydraulic conductivity identification, method verification, and field applications”, Journal of Hydrology, 204(1-4), 283-296, 1998.
  • [9] SNOW, D.T., “Anisotropie permeability of fractured media”, Water Resources Research, 5(6), 1273-1289, 1969.
  • [10] SNOW, D.T., “The frequency and apertures of fractures in rock”, In International journal of Rock mechanics and Mining sciences & Geomechanics Abstracts (Vol. 7, No. 1, pp. 23IN131-30IN240). Pergamon, 1970.
  • [11] ODA, M., HATSUYAMA, Y., & OHNİSHİ, Y. “Numerical experiments on permeability tensor and its application to jointed granite at Stripa mine, Sweden”, Journal of Geophysical Research: Solid Earth, 92(B8), 8037-8048, 1987.
  • [12] NAPPİ, M., ESPOSİTO, L., PİSCOPO, V., & REGA, G. “Hydraulic characterisation of some arenaceous rocks of Molise (Southern Italy) through outcropping measurements and Lugeon tests”, Engineering geology, 81(1), 54-64, 2005.
  • [13] ZHOU, C. B., SHARMA, R. S., CHEN, Y. F., & RONG, G., “Flow–stress coupled permeability tensor for fractured rock masses”, International Journal for Numerical and Analytical Methods in Geomechanics, 32(11), 1289-1309, 2008.
  • [14] RONG, G., PENG, J., WANG, X., LİU, G., & HOU, D., “Permeability tensor and representative elementary volume of fractured rock masses”, Hydrogeology journal, 21(7), 1655-1671, 2013.
  • [15] KAYABASİ, A., YESİLOGLU-GULTEKİN, N., & GOKCEOGLU, C., “Use of non-linear prediction tools to assess rock mass permeability using various discontinuity parameters”, Engineering Geology, 185, 1-9, 2015.
  • [16] SONMEZ, H., & ULUSAY, R., “Modifications to the geological strength index (GSI) and their applicability to stability of slopes” International Journal of Rock Mechanics and Mining Sciences, 36(6), 743-760, 1999.
  • [17] ASSARİ, A., & MOHAMMADİ, Z., “Analysis of rock quality designation (RQD) and Lugeon values in a karstic formation using the sequential indicator simulation approach, Karun IV Dam site, Iran”, Bulletin of Engineering Geology and the Environment, 76(2), 771-782, 2017.
  • [18] HUNT, R. E., “Geotechnical engineering investigation handbook” Crc Press, 2005.
  • [19] LUGEON, M., “Barrage et Géologie”, Dunod, Paris, 1933.
  • [20] QUİÑONES-ROZO, C., “Lugeon test interpretation, revisited”, Collaborative Management of Integrated Watersheds, US Society of Dams, 30th Annual Conference, pp. 405–414, 2010.
  • [21] DEERE, D. U., HENDRON, A. J., PATTON, F. D., & CORDİNG, E. J., “Design of surface and near-surface construction in rock”, The 8th US symposium on rock mechanics (USRMS). American Rock Mechanics Association, 1966.
  • [22] PALMSTROM, A., “Measurements of and correlations between block size and rock quality designation (RQD)”, Tunnelling and Underground Space Technology, 20(4), 362-377, 2005.
  • [23] BİENİAWSKİ, Z. T., “Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering”, John Wiley & Sons, 1989.
  • [24] BASARİR, H., OGE, I. F., & AYDİN, O., “Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis”, International Journal of Rock Mechanics and Mining Sciences, 76, 88-97, 2015.
  • [25] AKSOY, C. O., KUCUK, K., & UYAR, G. G., “Long-term time-dependent consolidation analysis by numerical modelling to determine subsidence effect area induced by longwall top coal caving method”, International Journal of Oil, Gas and Coal Technology, 12(1), 18-37, 2016.
  • [26] TÜYSÜZ, O., GENÇ, Ş.C., Polyak Eynez (Elmadere) Linyit Sahası Jeolojisi, 2013.
  • [27] BRİNKMANN, R., & FEİST, R., “Soma dağlarının jeolojisi”, Maden Tetkik ve Arama Dergisi, 74(74), 1970.
  • [28] NEBERT, K., “Lignite bearing Soma Neogene area, western Turkey”, Bulletin of Directorate of Mineral Research and Exploration, 90, 20-70, 1978.
  • [29] AKSOY, C. O., KOSE, H., ONARGAN, T., KOCA, Y., & HEASLEY, K., “Estimation of limit angle using laminated displacement discontinuity analysis in the Soma coal field, Western Turkey”, International Journal of Rock Mechanics and Mining Sciences, 41(4), 547-556, 2004.
  • [30] BASARİR, H., TUTLUOGLU, L., & KARPUZ, C., “Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple regressions”. Engineering Geology, 173, 1-9, 2014.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Maden Mühendisliği
Yazarlar

İbrahim Ferid Öge 0000-0001-6243-8268

Yayımlanma Tarihi 20 Temmuz 2018
Gönderilme Tarihi 3 Aralık 2017
Kabul Tarihi 16 Şubat 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Öge, İ. F. (2018). BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 808-816. https://doi.org/10.28948/ngumuh.445242
AMA Öge İF. BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ. NÖHÜ Müh. Bilim. Derg. Temmuz 2018;7(2):808-816. doi:10.28948/ngumuh.445242
Chicago Öge, İbrahim Ferid. “BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 2 (Temmuz 2018): 808-16. https://doi.org/10.28948/ngumuh.445242.
EndNote Öge İF (01 Temmuz 2018) BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 2 808–816.
IEEE İ. F. Öge, “BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 2, ss. 808–816, 2018, doi: 10.28948/ngumuh.445242.
ISNAD Öge, İbrahim Ferid. “BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/2 (Temmuz 2018), 808-816. https://doi.org/10.28948/ngumuh.445242.
JAMA Öge İF. BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ. NÖHÜ Müh. Bilim. Derg. 2018;7:808–816.
MLA Öge, İbrahim Ferid. “BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 2, 2018, ss. 808-16, doi:10.28948/ngumuh.445242.
Vancouver Öge İF. BİR MADEN SAHASINDA KAYA KÜTLESİ HİDROLİK İLETKENLİĞİNİN ÇOKLU REGRESYON YÖNTEMİ İLE KESTİRİMİ. NÖHÜ Müh. Bilim. Derg. 2018;7(2):808-16.

download