Derleme
BibTex RIS Kaynak Göster

Elektrikli araçların kablosuz şarj edilmesinde kullanılan güç aktarım yöntemlerinin incelenmesi

Yıl 2023, Cilt: 12 Sayı: 4, 1305 - 1317, 15.10.2023
https://doi.org/10.28948/ngumuh.1307910

Öz

Kullanımdaki elektrikli araç (EA) sayılarının her geçen gün artması ile birlikte şarj edilmeleri önemli bir problem haline gelmektedir. Günümüzde kurulu şarj istasyonlarının tamamına yakınında EA’lar kablo bağlantısı ile şarj edilmektedir. Kablolu şarj işlemi, uzun şarj süreleri ile birlikte güvenlik açısından da riskler taşımaktadır. Bu nedenle son yıllarda EA’ların kablosuz şarjı ile ilgili çalışmalar hız kazanmıştır. Diğer taraftan, kablosuz şarj işlemi, EA’ların hareket halinde şarj olabilmesini ifade eden dinamik şarjın uygulanmasına imkan sağlaması açısından oldukça önemlidir. Bu çalışmada, EA’ların kablosuz olarak şarj edilebilmesini sağlayan endüktif güç aktarım (EGA), kapasitif güç aktarım (KGA), optik güç aktarım (OGA) ve mikrodalga güç aktarım (MGA) yöntemlerinin temel prensipleri, farklı tasarımları, EA’ların kablosuz şarjı ile ilgili son yıllarda yapılan çalışmalar göz önünde bulundurularak açıklanmıştır. Sonuç olarak, EA’ların kablosuz şarjında kullanılan kablosuz güç aktarım yöntemlerinin avantajları, dezavantajları, fırsatları ve zorlukları karşılaştırmalı olarak kapsamlı bir bakış açısı ile sunulmuştur.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • EPA-US, Transportation greenhouse gas emissions. http://large.stanford.edu/courses/2021/ph240/jo2/docs/epa-21.pdf, Accessed 21 August 2023.
  • S. Alshahrani, M. Khalid, and M. Almuhaini, Electric vehicles beyond energy storage and modern power networks: Challenges and applications. IEEE Access, 7, 99031–99064, 2019. https://doi.org/10 .1109/ACCESS.2019.2928639.
  • G. Kim, I. Ashraf, J. Eom, and Y. Park, Optimal path configuration with coded laser pilots for charging electric vehicles using high intensity laser power beams. Appl. Sci., 11(9), 1-22, 2021. https://doi.org/ 10.3390/app11093826.
  • P. Machura and Q. Li, A critical review on wireless charging for electric vehicles. Renew. Sustain. Energy Rev., 104, 209–234, 2019. https://doi.org/10 .1016/j.rser.2019.01.027.
  • A. Mahesh, B. Chokkalingam, and L. Mihet-Popa, Inductive wireless power transfer charging for electric vehicles-a review. IEEE Access, 9, 137667–137713, 2021. https://doi.org/ 10.1109/ACCESS.20 21.3116678.
  • C. Panchal, S. Stegen, and J. Lu, Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. an Int. J., 21 (5) 922–937, 2018. https://doi.org/10.1016/j.jestch.2018.06 .015.
  • E. Aydin, M. T. Aydemir, A. Aksoz, and M. El Baghdadi, Inductive power transfer for electric vehicle charging applications : a comprehensive review. Energies, 15 (14), 1-24, 2022. https://doi.or g/10.3390/en15144962
  • F. Durmuş and S. Karagöl, The effect of the wireless power transfer for electric vehicles on state of charge. Eur. J. Sci. Technol. 26, 447–455, 2021. https://doi.org/10.31590/ejosat.960364.
  • A. A. S. Mohamed, A. Meintz, and L. Zhu, System design and optimization of in-route wireless charging ınfrastructure for shared automated electric vehicles. IEEE Access, 7, 79968–79979, 2019. https ://doi.org/10.1109/ACCESS.2019.2920232.
  • Z. Wang, Y. Zhang, X. He, B. Luo, and R. Mai, Research and application of capacitive power transfer system : a review. Electronics, 11, 1158. 20 22. https://doi.org/10.3390/electronics11071158
  • J. Dai and D. C. Ludois, A survey of wireless power transfer and a critical comparison of ınductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron., 30 (11) 6017–6029, 2015. https://doi.org/ 10.1109/TPEL.2015.2415253
  • F. Lu, H. Zhang, and C. Mi, A review on the recent development of capacitive wireless power transfer technology. Energies, 10, 1-20, 2017. https://doi.or g/10.3390/en10111752.
  • C. G. Colombo, S. M. Miraftabzadeh, A. Saldarini, M. Longo, M. Brenna, W. Yaici, Literature review on wireless charging technologies : future trend for electric vehicle. Second International Conference on Sustainable Mobility Applications, Renewables and Technology, pp. 1-5, Cassino, Italy, 23-25 November 2022. https:// doi.org/10.1109/SMART5 5236. 2022 .9990331
  • L. Sun, D. Ma, and H. Tang, A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew. Sustain. Energy Rev., 91, 490–503, 2018. https://doi.org/10.1016/j.rser.2018.04.016.
  • K. A. Kalwar, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, Coil design for high misalignment tolerant ınductive power transfer system for ev charging. Energies, 9 (11), 1-13, 2016. https://doi.or g/10.3390/en9110937.
  • H. Chen, Y. Xiao, Basic principles of wireless power transfer and comparisons between electromagnetic ınduction and microwave wireless charging. Int. Conf. Appl. Phys. Comput., pp. 104–106, Ottawa, Canada, 08-10 September 2022. https ://doi.org/10.1109/ICAPC57304.2022.00026.
  • A. A. S. Mohamed, A. A. Shaier, H. Metwally, and S. I. Selem, A comprehensive overview of inductive pad in electric vehicles stationary charging. Appl. Energy, 262, 1-13, 2020. https://doi.org/10.1016/j.a penergy.2020.114584.
  • S. Y. Choi, B. W. Gu, S. Y. Jeong, C. T. Rim, Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron., 3 (1), 18–36, 2015. https:/ /doi.org/10.1109/JESTPE.2014.2343674.
  • H. Feng and R. Tavakoli, Advances in high-power wireless charging systems : overview and design considerations. IEEE Trans Transp. Electrif., 6 (3), 886–919, 2020. https://doi.org/10.1109/TTE.2020.3 012543.
  • A. Ahmad, M. S. Alam, A. A. S. Mohamed, Design and interoperability analysis of quadruple pad structure for electric vehicle wireless charging application. IEEE Trans. Transp. Electrif., 5 (4), 934–945, 2019. https://doi.org/10.1109/TTE.2019.2 929443.
  • G. Palani, U. Sengamalai, P. Vishnuram, and B. Nastasi, Challenges and barriers of wireless charging technologies for electric vehicles. Energies, 16, 1-15, 2023. https://doi.org/10.3390/en16052138
  • A. C. Bagchi, A. Kamineni, R. A. Zane and R. Carlson, Review and comparative analysis of topologies and control methods in dynamic wireless charging of electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron., 9 (4), 4947–4962, 2021. https: //doi.org/10.1109/JESTPE.2021.3058968.
  • G. R. Nagendra, G. A. Covic, and J. T. Boys, Determining the physical size of inductive couplers for IPT ev systems. IEEE J. Emerg. Sel. Top. Power Electron., 2 (3) 571–583, 2014. https://doi.org/10.11 09/JESTPE.2014.2302295.
  • W. Chen C. Liu, C. H. T. Lee, Z. Zhan, Cost-effectiveness comparison of coupler designs of wireless power transfer for electric vehicle dynamic charging. Energies, 9, 1-21, 2016. https://doi.org/10. 3390/en9110906.
  • K. Aditya, V. K. Sood, and S. S. Williamson, Magnetic characterization of unsymmetrical coil pairs using archimedean spirals for wider misalignment tolerance in ipt systems. IEEE Trans. Transp. Electrif., 3 (2) 454–463, 2017. https://doi.or g/10.1109/TTE.2017.2673847.
  • A. A. S. Mohamed, S. An, and O. Mohammed, Coil design optimization of power pad in IPT system for electric vehicle applications. IEEE Trans. Magn., 54 (4), 1–5, 2018. https://doi.org/10.1109/ TMAG.201 7.2784381.
  • M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang, Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans. Ind. Electron., 60 (1), 318–328, 2013. https://doi.org/10.1109/TIE.2011.21792 74.
  • M. Mohammad et al., Design of an EMF suppressing magnetic shield for a 100-kW DD-coil wireless charging system for electric vehicles. Appl. Power Electron. Conf. Expo. - APEC, pp. 1521–1527, Anaheim, CA, USA, 17-21 March 2019. https://doi.org/10.1109/APEC.2019.8722084.
  • T. Campi, S. Cruciani, F. Maradei, and M. Feliziani, Active coil system for magnetic field reduction in an automotive wireless power transfer system. 2019 Int. Symp. Electromagn. Compat. Signal Power Integrity, pp. 189–192, New Orleans, LA, USA, 22-26 July 2019. https://doi.org/10.1109/ISEMC.2019 .8825202.
  • E. Asa, M. Mohammad, O. C. Onar, J. Pries, V. Galigekere and G. J. Su, Review of safety and exposure limits of electromagnetic fields in wireless electric vehicle charging (wevc) applications. 2020 Transp. Electrif. Conf. Expo, Chicago, IL, USA, 23-26 June 2020. https://doi.org/10.1109/ITEC48692.2 020.9161597.
  • V. Shevchenko et al, Compensation topologies in ipt systems: standards, requirements, classification, analysis, comparison and application. IEEE Access, 7, 120559–120580, 2019, https://doi.org/10.1109/A CCESS.2019.2937891.
  • H. Li, Y. Liu, K. Zhou, Z. He, W. Li, and R. Mai, Uniform power IPT system with three-phase transmitter and bipolar receiver for dynamic charging. IEEE Trans. Power Electron., 34 (3), 2013–2017, 2019. https://doi.org/10.1109/TPEL.20 18.2864781.
  • F. Musavi, M. Edington, and W. Eberle, Wireless power transfer: a survey of ev battery charging technologies. IEEE Energy Convers. Congr. Expo., pp. 1804–1810, Raleigh, NC, USA, 15-20 September 2012. https://doi.org/10.1109/ECCE.20 12.6342593.
  • J. M. González-gonzález and J. A. Aguado, Wireless power transfer technologies applied to electric vehicles: a review. Energies, 14, 1-18, 2021. https://doi.org/10.3390/ en14061547
  • P. Vishuram, P. Suresh, R. Narayanamoorthi, K. Vijayakumar, B. Nastasi, Wireless chargers for electric vehicle: a systematic review on converter topologies, environmental assessment, and review policy. Energies, 16, 1-17, 2023. https://doi.org /10.3390/en16041731.
  • A. J. Moradewicz and M. P. Kazmierkowski, Contactless energy transfer system with fpga-controlled resonant converter. IEEE Trans. Ind. Electron., 57 (9), 3181–3190, 2010. https://doi.org/ 10.1109/TIE.2010.2051395.
  • W. Zhang, and C. C. Mi, Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol., 65 (6), 4768–4778, 2016. https://doi.org/10.1109/TVT.2015.2454292.
  • P. Tan, T. Peng, X. Gao, and B. Zhang, Flexible combination and switching control for robust wireless power transfer system with hexagonal array coil. IEEE Trans. Power Electron., 36 (4), 3868–3882, 2021. https://doi.org/10.1109/TPEL.2020.301 8908.
  • E. Asa, K. Colak, M. Bojarski, and D. Czarkowski, A novel multi-level phase-controlled resonant inverter with common mode capacitor for wireless ev chargers. Transp. Electrif. Conf. Expo, pp. 1–6, Dearborn, MI, USA, 14-17 June 2015. https://doi .org/10.1109/ITEC.2015.7165734.
  • A. Ramezani and M. Narimani, Optimized electric vehicle wireless chargers with reduced output voltage sensitivity to misalignment. IEEE J. Emerg. Sel. Top. Power Electron., 8 (4), 3569–3581, 2020. https://doi.org/10.1109/JESTPE.2019.2958932.
  • S. C. Moon and G. W. Moon, Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers. IEEE Trans. Power Electron., 31 (10), 6844–6854, 2016. https://doi.org/10.1109/TPEL.2015.2506779.
  • J. Zhou, P. Yao, K. Guo, P. Cao, Y. Zhang, and H. Ma, A heterogeneous inductive power transfer system for electric vehicles with spontaneous constant current and constant voltage output features. Electron., 9 (11), 1–20, 2020. https://doi or g/10.3390/electronics9111978.
  • Z. Dai, J. Wang, M. Long, and H. Huang, A witricity-based high-power device for wireless charging of electric vehicles. Energies, 10 (3), 1-24, 2017. https://doi.org/10.3390/en10030323.
  • H. Kim et al., Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage. IEEE Trans. Microw. Theory Tech., 64 (2), 383–400, 2016. https://doi.org/10.1109/TMTT. 2015.2513394.
  • I. Villar, A. Garcia-Bediaga, U. Iruretagoyena, R. Arregi, and P. Estevez, Design and experimental validation of a 50kw IPT for railway traction applications. Energy Convers. Congr. Expo., pp. 1177–1183, Portland, OR, USA, 23-27 September 2018. https://doi.org/10.1109/ECCE.2018.8558441.
  • M. Zucca et al., Assessment of the overall efficiency in wpt stations for electric vehicles. Sustainability, 13, 1–19, 2021. https://doi.org/10.3390/su13052436
  • N. A. Keeling, G. A. Covic, and J. T. Boys, A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron., 57 (2), 744–751, 2010. https://doi.org/10.1109/TIE.2009.2 027255.
  • C. Wang, G. A. Covic, O. H. Stielau, Investigating an LCL load resonant inverter for inductive power transfer applications IEEE Trans. Power Electron. 19 (4), 995–1002, 2004. https://doi.org/10.1109/TP EL.2004.830098.
  • B. Esteban, M. Sid-ahmed, N. C. Kar, and A comparative study of power supply architectures in wireless ev charging systems. IEEE Trans. Power Electron., 30 (11), 6408–6422, 2015. https://doi.org/ 10.1109/TPEL.2015.2440256.
  • N. Rasekh, J. Kavianpour, and M. Mirsalim, A novel integration method for a bipolar receiver pad using LCC compensation topology for wireless power transfer. IEEE Trans. Veh. Technol., 67 (8), 7419–7428, 2018. https://doi.org/10.1109/TVT.201 8.2837348.
  • T. Kan, T. Nguyen, J. C. White, R. K. Malhan, and C. C. Mi, A new integration method for an electric vehicle wireless charging system using LCC compensation topology: analysis and design. IEEE Trans. Power Electron., 32 (2), 1638–1650, 2017. https://doi.org/10.1109/TPEL.2016.2552060.
  • J. M. González-González, A. Triviño-Cabrera, and J. A. Aguado, Design and validation of a control algorithm for a SAE J2954-compliant wireless charger to guarantee the operational electrical constraints. Energies, 11, 1-25, 2018. https://doi.org/10.3390/en11030604.
  • D. Rozario, N. A. Azeez, S. S. Williamson, Comprehensive review and comparative analysis of compensation networks for capacitive power transfer systems. Int. Symp. Ind. Electron, pp. 823–829, Santa Clara, CA, USA, 08-10 June 2016, https://doi.org/10.1109/ISIE.2016.7744996.
  • Q. Deng et al., Modeling and control of inductive power transfer system supplied by multiphase phase-controlled inverter. IEEE Trans. Power Electron., 34 (9), 9303–9315, 2019, https://doi.org/10.1109/TPEL .2018.2886846.
  • C. H. Lin et al., Comprehensive analysis of IPT v/s CPT for wireless ev charging and effect of capacitor plate shape and foreign particle on CPT. Processes, 9, 1-25, 2021. https://doi.org/10.3390/pr9091619.
  • B. Luo, T. Long, L. Guo, R. Dai, R. Mai, and Z. He, Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application. IEEE Trans. Ind. Appl., 56 (3), 3034–3042, 2020.https://doi.org/10.1109/TIA.2020.2979 110.
  • F. Lu , C. C Mi., A two-plate capacitive wireless power transfer system for electric vehicle charging applications. IEEE Trans. Power Electron., 33 (2), 964–969, 2018. https://doi.org/10.1109/TPEL.2017. 2735365.
  • F. Lu et al. Double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging. IEEE Trans. Power Electron., 30 (11), 6011–6014, 2015. https://doi.org/10.1109/TPEL.20 15.2446891.
  • H. Zang, F. Lu, H. Hofmann,W. Liu and C.C. Mi, Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer. IEEE Trans. Power Electron., 33 (1), 665–675, 2018. https://doi.org/10.1109/TPEL.2017.2662583
  • C. Lecluyse, B. Minnaert, M. Kleemann, A review of the current state of technology of capacitive wireless power transfer. Energies, 14, 1-25, 2021. https://doi.org/10.3390/en14185862
  • S. Ahmad, R. Hattori, A. Muharram, Generalized circuit model of shielded capacitive power transfer. Energies, 14, 1-18. 2021. https://doi.org/10.3390 /en 14102826
  • V. B. Vu, M. Dahidah, V. Pickert, and V. T. Phan, An improved lcl-l compensation topology for capacitive power transfer in electric vehicle charging. IEEE Access, 8, 27757–27768, 2020. https://doi.org/10.1109/ACCESS.2020.2971961.
  • H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer. IEEE Trans. Power Electron., 33 (1), 665–675, 2018. https://doi.org/10.1109/TPEL.2017.2662583.
  • B. Luo, R. Mai, L. Guo, D. Wu, and Z. He, LC–CLC compensation topology for capacitive power transfer system to improve misalignment performance. IET Power Electron., 12 (10), 2626–2633, 2019. https:// doi.org/10.1049/iet-pel.2018.5606.
  • S. K. Mishra, R. Adda, S. Sekhar, A. Joshi, and A. K. Rathore, Power transfer using portable surfaces in capacitively coupled power transfer technology. IET Power Electron., 9 (5), 997–1008, 2016. https:// doi.org/10.1049/iet-pel.2015.0332.
  • J. Lian, X. Qu, An LCLC-LC-compensated capacitive power transferred battery charger with near-unity power factor and configurable charging profile. IEEE Trans. Ind. Appl., 58 (1), 1053–1060, 2022. https://doi.org/10.1109/TIA.2021.3089448
  • D. A. I. Xin and S. U. N. Min, Generalized hamiltonian energy modeling method for wireless power transfer system. 8th International Conference on Power Electronics Systems and Applications, Hong Kong, China, 07-10 December 2020. https://doi.org/10.1109/PESA50370.2020.9344047.
  • J. Lian and X. Qu, Design of a double-sided LC compensated capacitive power transfer system with capacitor voltage stress optimization. IEEE Trans. Circuits Syst. II Express Briefs, 67 (4), 715–719, 2020, https://doi.org/10.1109/TCSII.2019.2918648.
  • J. Dai, and D. C. Ludois, Single active switch power electronics for kilowatt scale capacitive power transfer. IEEE J. Emerg. Sel. Top. Power Electron., 3 (1), 315–323, 2015. https://doi.org/10.1109/JEST PE.2014.2334621.
  • A. S. Haritha and J. K. Jose, A reliable inverter for wireless power transfer applications. Int. Conf. Circuits Syst. Digit. Enterp. Technol. pp 1–5, Kottayam, India, 21-22 December 2018. https://doi .org/10.1109/ICCSDET.2018.8821139
  • C. Jiang, K. T. Chau, C. Liu, C. H. T. Lee, An overview of resonant circuits for wireless power transfer, Energies, 10 (7), 1-22, 2017. https://doi.org /10.3390/en10070894.
  • D. H. Nguyen, Dynamic optical wireless power transfer for electric vehicles. IEEE Access, 11, 2787–2795, 2023. https://doi.org/10.1109/ACCESS. 2023.3234577.
  • A. Mohammadnia, B. M. Ziapour, H. Ghaebi, and M. H. Khooban, Feasibility assessment of next-generation drones powering by laser-based wireless power transfer. Opt. Laser Technol., 143, 1-8, 2021. https://doi.org/10.1016/j.optlastec.2021.107283.
  • Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, Distributed laser charging: a wireless power transfer approach. IEEE Internet Things J., 5 (5), 3853–3864, 2018. https://doi.org/10.1109/JIOT.20 18.2851070.
  • K. Jin and W. Zhou, Wireless laser power transmission : a review of recent progress. IEEE Trans. Power Electron, 34 (4), 3842–3859, 2019. https://doi.org/10.1109/TPEL.2018.2853156
  • Y. Rathod and L. Hughes, Simulating the charging of electric vehicles by laser. Procedia Comput. Sci., 155, 527–534, 2019. https://doi.org/10.1016/j.pro cs.2019.08.073.
  • K. J. Pai, Temperature rise effects on dynamic resistances for laser diodes with a wavelength of 450 nm for vehicle headlight applications. IEEE Trans. Veh. Technol., 68 (10), 9529–9542, 2019. https://doi .org/10.1109/TVT.2019.2929225.
  • V. A. Bogushevskaya et al., An experimental investigation of the feasibility of using silicone and gallium arsenide solar batteries on space vehicles for receiving energy of laser infrared emission. Therm. Eng, 59 (13), 975–980, 2012. https://doi.org/10.1 134/S0040601512130034.
  • U. F. Shaikh, A. Das, A. Barai, and I. Masters, Electro-thermo-mechanical behaviours of laser joints for electric vehicle battery ınterconnects. 2019 Electr. Veh. Int. Conf. EV 2019, pp. 1–6, Bucharest, Romania, 03-04 October 2019. https://doi.org/10.11 09/EV.2019.8892972.
  • T. Li et al., A novel design of microstrip patch ante nna array with modified-I-shaped electroma gnetic metamaterials applied in microwa ve wireless power transmission. Optik (Stuttg)., 173, 193–205, 2018. https://doi.org/10.10 16/j.ijleo.2018.08.012.
  • W. Li, R. Li, J. Dong, J. Yang, and X. Zhang, Demonstration of a microwave photonic radar for high-resolution vehicle sar/isar imaging. Int. Top. Meet. Microw. Photonics, pp. 1–3, Ottawa, Canada, 07-10 October 2019. https://doi.org/10.1109/MWP .2019.8892002.
  • J. D. Castro, S. Singh, A. Arora, S. Louie, and D. Senic, Enabling safe autonomous vehicles by advanced mm-wave radar simulations. MTT-S Int. Microw. Symp. Dig., pp. 1476–1479, Boston, MA, USA, 02-07 June 2019. https://doi.org/10.1109/mws ym.2019.8700843.
  • C. Wang, W. Xu, C. Zhang, M. Wang, and X. Wang, Microwave wireless power transmission technology index system and test evaluation methods. EURASIP J. Adv. Signal Process., 16, 1-11, 2022. https://doi.org/10.1186/s13634-022-00846-7.
  • C. Wang, W. Xu, C. Zhang, M. Wang, X. Wang, Microwave wireless power transmission technology index system and test evaluation methods. EURASIP Journal on Advances in Signal Processing 16, 1–11, 2022. https://doi.org/10.1186/s13634-022-00846-7
  • I. Ahmed, E. A. Elghanam, M. S. Hassan, and A. Osman, Study of the feasibility of using microwave power transfer for dynamic wireless electric vehicle charging. Transp. Electrif. Conf. Expo, pp. 365–370, Chicago, IL, USA, 23-26 June 2020. https://doi.org/ 10.1109/ITEC48692.2020.9161475.

Analysis of power transfer methods used in wireless charging of electric vehicles

Yıl 2023, Cilt: 12 Sayı: 4, 1305 - 1317, 15.10.2023
https://doi.org/10.28948/ngumuh.1307910

Öz

The number of electric vehicles (EV) in use is increasing day by day. With the increasing number of EVs, their charging is becoming a major problem. Today, EVs are charged by cable connection in almost all installed charging stations. Wired charging brings health and safety risks along w1ith long charging times. For this reason, studies with wireless charging of EVs have been developing rapidly in recent years. Wireless charging of EVs is very important due to it allows the application of dynamic charging, which means charging while moving. In this study, the basic principles of inductive power transfer (IPT), capacitive power transfer (CPT), optical power transfer (OPT) and microwave power transfer (MPT) methods that enable wireless charging of EVs, different topology and structures, wireless charging of EVs has been explained by taking into consideration the studies carried out in recent years regarding the charging of the battery. As a result, a comprehensive perspective on the advantages, disadvantages, opportunities and challenges of wireless power transmission methods is presented.

Proje Numarası

-

Kaynakça

  • EPA-US, Transportation greenhouse gas emissions. http://large.stanford.edu/courses/2021/ph240/jo2/docs/epa-21.pdf, Accessed 21 August 2023.
  • S. Alshahrani, M. Khalid, and M. Almuhaini, Electric vehicles beyond energy storage and modern power networks: Challenges and applications. IEEE Access, 7, 99031–99064, 2019. https://doi.org/10 .1109/ACCESS.2019.2928639.
  • G. Kim, I. Ashraf, J. Eom, and Y. Park, Optimal path configuration with coded laser pilots for charging electric vehicles using high intensity laser power beams. Appl. Sci., 11(9), 1-22, 2021. https://doi.org/ 10.3390/app11093826.
  • P. Machura and Q. Li, A critical review on wireless charging for electric vehicles. Renew. Sustain. Energy Rev., 104, 209–234, 2019. https://doi.org/10 .1016/j.rser.2019.01.027.
  • A. Mahesh, B. Chokkalingam, and L. Mihet-Popa, Inductive wireless power transfer charging for electric vehicles-a review. IEEE Access, 9, 137667–137713, 2021. https://doi.org/ 10.1109/ACCESS.20 21.3116678.
  • C. Panchal, S. Stegen, and J. Lu, Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. an Int. J., 21 (5) 922–937, 2018. https://doi.org/10.1016/j.jestch.2018.06 .015.
  • E. Aydin, M. T. Aydemir, A. Aksoz, and M. El Baghdadi, Inductive power transfer for electric vehicle charging applications : a comprehensive review. Energies, 15 (14), 1-24, 2022. https://doi.or g/10.3390/en15144962
  • F. Durmuş and S. Karagöl, The effect of the wireless power transfer for electric vehicles on state of charge. Eur. J. Sci. Technol. 26, 447–455, 2021. https://doi.org/10.31590/ejosat.960364.
  • A. A. S. Mohamed, A. Meintz, and L. Zhu, System design and optimization of in-route wireless charging ınfrastructure for shared automated electric vehicles. IEEE Access, 7, 79968–79979, 2019. https ://doi.org/10.1109/ACCESS.2019.2920232.
  • Z. Wang, Y. Zhang, X. He, B. Luo, and R. Mai, Research and application of capacitive power transfer system : a review. Electronics, 11, 1158. 20 22. https://doi.org/10.3390/electronics11071158
  • J. Dai and D. C. Ludois, A survey of wireless power transfer and a critical comparison of ınductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron., 30 (11) 6017–6029, 2015. https://doi.org/ 10.1109/TPEL.2015.2415253
  • F. Lu, H. Zhang, and C. Mi, A review on the recent development of capacitive wireless power transfer technology. Energies, 10, 1-20, 2017. https://doi.or g/10.3390/en10111752.
  • C. G. Colombo, S. M. Miraftabzadeh, A. Saldarini, M. Longo, M. Brenna, W. Yaici, Literature review on wireless charging technologies : future trend for electric vehicle. Second International Conference on Sustainable Mobility Applications, Renewables and Technology, pp. 1-5, Cassino, Italy, 23-25 November 2022. https:// doi.org/10.1109/SMART5 5236. 2022 .9990331
  • L. Sun, D. Ma, and H. Tang, A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew. Sustain. Energy Rev., 91, 490–503, 2018. https://doi.org/10.1016/j.rser.2018.04.016.
  • K. A. Kalwar, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, Coil design for high misalignment tolerant ınductive power transfer system for ev charging. Energies, 9 (11), 1-13, 2016. https://doi.or g/10.3390/en9110937.
  • H. Chen, Y. Xiao, Basic principles of wireless power transfer and comparisons between electromagnetic ınduction and microwave wireless charging. Int. Conf. Appl. Phys. Comput., pp. 104–106, Ottawa, Canada, 08-10 September 2022. https ://doi.org/10.1109/ICAPC57304.2022.00026.
  • A. A. S. Mohamed, A. A. Shaier, H. Metwally, and S. I. Selem, A comprehensive overview of inductive pad in electric vehicles stationary charging. Appl. Energy, 262, 1-13, 2020. https://doi.org/10.1016/j.a penergy.2020.114584.
  • S. Y. Choi, B. W. Gu, S. Y. Jeong, C. T. Rim, Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron., 3 (1), 18–36, 2015. https:/ /doi.org/10.1109/JESTPE.2014.2343674.
  • H. Feng and R. Tavakoli, Advances in high-power wireless charging systems : overview and design considerations. IEEE Trans Transp. Electrif., 6 (3), 886–919, 2020. https://doi.org/10.1109/TTE.2020.3 012543.
  • A. Ahmad, M. S. Alam, A. A. S. Mohamed, Design and interoperability analysis of quadruple pad structure for electric vehicle wireless charging application. IEEE Trans. Transp. Electrif., 5 (4), 934–945, 2019. https://doi.org/10.1109/TTE.2019.2 929443.
  • G. Palani, U. Sengamalai, P. Vishnuram, and B. Nastasi, Challenges and barriers of wireless charging technologies for electric vehicles. Energies, 16, 1-15, 2023. https://doi.org/10.3390/en16052138
  • A. C. Bagchi, A. Kamineni, R. A. Zane and R. Carlson, Review and comparative analysis of topologies and control methods in dynamic wireless charging of electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron., 9 (4), 4947–4962, 2021. https: //doi.org/10.1109/JESTPE.2021.3058968.
  • G. R. Nagendra, G. A. Covic, and J. T. Boys, Determining the physical size of inductive couplers for IPT ev systems. IEEE J. Emerg. Sel. Top. Power Electron., 2 (3) 571–583, 2014. https://doi.org/10.11 09/JESTPE.2014.2302295.
  • W. Chen C. Liu, C. H. T. Lee, Z. Zhan, Cost-effectiveness comparison of coupler designs of wireless power transfer for electric vehicle dynamic charging. Energies, 9, 1-21, 2016. https://doi.org/10. 3390/en9110906.
  • K. Aditya, V. K. Sood, and S. S. Williamson, Magnetic characterization of unsymmetrical coil pairs using archimedean spirals for wider misalignment tolerance in ipt systems. IEEE Trans. Transp. Electrif., 3 (2) 454–463, 2017. https://doi.or g/10.1109/TTE.2017.2673847.
  • A. A. S. Mohamed, S. An, and O. Mohammed, Coil design optimization of power pad in IPT system for electric vehicle applications. IEEE Trans. Magn., 54 (4), 1–5, 2018. https://doi.org/10.1109/ TMAG.201 7.2784381.
  • M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang, Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans. Ind. Electron., 60 (1), 318–328, 2013. https://doi.org/10.1109/TIE.2011.21792 74.
  • M. Mohammad et al., Design of an EMF suppressing magnetic shield for a 100-kW DD-coil wireless charging system for electric vehicles. Appl. Power Electron. Conf. Expo. - APEC, pp. 1521–1527, Anaheim, CA, USA, 17-21 March 2019. https://doi.org/10.1109/APEC.2019.8722084.
  • T. Campi, S. Cruciani, F. Maradei, and M. Feliziani, Active coil system for magnetic field reduction in an automotive wireless power transfer system. 2019 Int. Symp. Electromagn. Compat. Signal Power Integrity, pp. 189–192, New Orleans, LA, USA, 22-26 July 2019. https://doi.org/10.1109/ISEMC.2019 .8825202.
  • E. Asa, M. Mohammad, O. C. Onar, J. Pries, V. Galigekere and G. J. Su, Review of safety and exposure limits of electromagnetic fields in wireless electric vehicle charging (wevc) applications. 2020 Transp. Electrif. Conf. Expo, Chicago, IL, USA, 23-26 June 2020. https://doi.org/10.1109/ITEC48692.2 020.9161597.
  • V. Shevchenko et al, Compensation topologies in ipt systems: standards, requirements, classification, analysis, comparison and application. IEEE Access, 7, 120559–120580, 2019, https://doi.org/10.1109/A CCESS.2019.2937891.
  • H. Li, Y. Liu, K. Zhou, Z. He, W. Li, and R. Mai, Uniform power IPT system with three-phase transmitter and bipolar receiver for dynamic charging. IEEE Trans. Power Electron., 34 (3), 2013–2017, 2019. https://doi.org/10.1109/TPEL.20 18.2864781.
  • F. Musavi, M. Edington, and W. Eberle, Wireless power transfer: a survey of ev battery charging technologies. IEEE Energy Convers. Congr. Expo., pp. 1804–1810, Raleigh, NC, USA, 15-20 September 2012. https://doi.org/10.1109/ECCE.20 12.6342593.
  • J. M. González-gonzález and J. A. Aguado, Wireless power transfer technologies applied to electric vehicles: a review. Energies, 14, 1-18, 2021. https://doi.org/10.3390/ en14061547
  • P. Vishuram, P. Suresh, R. Narayanamoorthi, K. Vijayakumar, B. Nastasi, Wireless chargers for electric vehicle: a systematic review on converter topologies, environmental assessment, and review policy. Energies, 16, 1-17, 2023. https://doi.org /10.3390/en16041731.
  • A. J. Moradewicz and M. P. Kazmierkowski, Contactless energy transfer system with fpga-controlled resonant converter. IEEE Trans. Ind. Electron., 57 (9), 3181–3190, 2010. https://doi.org/ 10.1109/TIE.2010.2051395.
  • W. Zhang, and C. C. Mi, Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol., 65 (6), 4768–4778, 2016. https://doi.org/10.1109/TVT.2015.2454292.
  • P. Tan, T. Peng, X. Gao, and B. Zhang, Flexible combination and switching control for robust wireless power transfer system with hexagonal array coil. IEEE Trans. Power Electron., 36 (4), 3868–3882, 2021. https://doi.org/10.1109/TPEL.2020.301 8908.
  • E. Asa, K. Colak, M. Bojarski, and D. Czarkowski, A novel multi-level phase-controlled resonant inverter with common mode capacitor for wireless ev chargers. Transp. Electrif. Conf. Expo, pp. 1–6, Dearborn, MI, USA, 14-17 June 2015. https://doi .org/10.1109/ITEC.2015.7165734.
  • A. Ramezani and M. Narimani, Optimized electric vehicle wireless chargers with reduced output voltage sensitivity to misalignment. IEEE J. Emerg. Sel. Top. Power Electron., 8 (4), 3569–3581, 2020. https://doi.org/10.1109/JESTPE.2019.2958932.
  • S. C. Moon and G. W. Moon, Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers. IEEE Trans. Power Electron., 31 (10), 6844–6854, 2016. https://doi.org/10.1109/TPEL.2015.2506779.
  • J. Zhou, P. Yao, K. Guo, P. Cao, Y. Zhang, and H. Ma, A heterogeneous inductive power transfer system for electric vehicles with spontaneous constant current and constant voltage output features. Electron., 9 (11), 1–20, 2020. https://doi or g/10.3390/electronics9111978.
  • Z. Dai, J. Wang, M. Long, and H. Huang, A witricity-based high-power device for wireless charging of electric vehicles. Energies, 10 (3), 1-24, 2017. https://doi.org/10.3390/en10030323.
  • H. Kim et al., Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage. IEEE Trans. Microw. Theory Tech., 64 (2), 383–400, 2016. https://doi.org/10.1109/TMTT. 2015.2513394.
  • I. Villar, A. Garcia-Bediaga, U. Iruretagoyena, R. Arregi, and P. Estevez, Design and experimental validation of a 50kw IPT for railway traction applications. Energy Convers. Congr. Expo., pp. 1177–1183, Portland, OR, USA, 23-27 September 2018. https://doi.org/10.1109/ECCE.2018.8558441.
  • M. Zucca et al., Assessment of the overall efficiency in wpt stations for electric vehicles. Sustainability, 13, 1–19, 2021. https://doi.org/10.3390/su13052436
  • N. A. Keeling, G. A. Covic, and J. T. Boys, A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron., 57 (2), 744–751, 2010. https://doi.org/10.1109/TIE.2009.2 027255.
  • C. Wang, G. A. Covic, O. H. Stielau, Investigating an LCL load resonant inverter for inductive power transfer applications IEEE Trans. Power Electron. 19 (4), 995–1002, 2004. https://doi.org/10.1109/TP EL.2004.830098.
  • B. Esteban, M. Sid-ahmed, N. C. Kar, and A comparative study of power supply architectures in wireless ev charging systems. IEEE Trans. Power Electron., 30 (11), 6408–6422, 2015. https://doi.org/ 10.1109/TPEL.2015.2440256.
  • N. Rasekh, J. Kavianpour, and M. Mirsalim, A novel integration method for a bipolar receiver pad using LCC compensation topology for wireless power transfer. IEEE Trans. Veh. Technol., 67 (8), 7419–7428, 2018. https://doi.org/10.1109/TVT.201 8.2837348.
  • T. Kan, T. Nguyen, J. C. White, R. K. Malhan, and C. C. Mi, A new integration method for an electric vehicle wireless charging system using LCC compensation topology: analysis and design. IEEE Trans. Power Electron., 32 (2), 1638–1650, 2017. https://doi.org/10.1109/TPEL.2016.2552060.
  • J. M. González-González, A. Triviño-Cabrera, and J. A. Aguado, Design and validation of a control algorithm for a SAE J2954-compliant wireless charger to guarantee the operational electrical constraints. Energies, 11, 1-25, 2018. https://doi.org/10.3390/en11030604.
  • D. Rozario, N. A. Azeez, S. S. Williamson, Comprehensive review and comparative analysis of compensation networks for capacitive power transfer systems. Int. Symp. Ind. Electron, pp. 823–829, Santa Clara, CA, USA, 08-10 June 2016, https://doi.org/10.1109/ISIE.2016.7744996.
  • Q. Deng et al., Modeling and control of inductive power transfer system supplied by multiphase phase-controlled inverter. IEEE Trans. Power Electron., 34 (9), 9303–9315, 2019, https://doi.org/10.1109/TPEL .2018.2886846.
  • C. H. Lin et al., Comprehensive analysis of IPT v/s CPT for wireless ev charging and effect of capacitor plate shape and foreign particle on CPT. Processes, 9, 1-25, 2021. https://doi.org/10.3390/pr9091619.
  • B. Luo, T. Long, L. Guo, R. Dai, R. Mai, and Z. He, Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application. IEEE Trans. Ind. Appl., 56 (3), 3034–3042, 2020.https://doi.org/10.1109/TIA.2020.2979 110.
  • F. Lu , C. C Mi., A two-plate capacitive wireless power transfer system for electric vehicle charging applications. IEEE Trans. Power Electron., 33 (2), 964–969, 2018. https://doi.org/10.1109/TPEL.2017. 2735365.
  • F. Lu et al. Double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging. IEEE Trans. Power Electron., 30 (11), 6011–6014, 2015. https://doi.org/10.1109/TPEL.20 15.2446891.
  • H. Zang, F. Lu, H. Hofmann,W. Liu and C.C. Mi, Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer. IEEE Trans. Power Electron., 33 (1), 665–675, 2018. https://doi.org/10.1109/TPEL.2017.2662583
  • C. Lecluyse, B. Minnaert, M. Kleemann, A review of the current state of technology of capacitive wireless power transfer. Energies, 14, 1-25, 2021. https://doi.org/10.3390/en14185862
  • S. Ahmad, R. Hattori, A. Muharram, Generalized circuit model of shielded capacitive power transfer. Energies, 14, 1-18. 2021. https://doi.org/10.3390 /en 14102826
  • V. B. Vu, M. Dahidah, V. Pickert, and V. T. Phan, An improved lcl-l compensation topology for capacitive power transfer in electric vehicle charging. IEEE Access, 8, 27757–27768, 2020. https://doi.org/10.1109/ACCESS.2020.2971961.
  • H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer. IEEE Trans. Power Electron., 33 (1), 665–675, 2018. https://doi.org/10.1109/TPEL.2017.2662583.
  • B. Luo, R. Mai, L. Guo, D. Wu, and Z. He, LC–CLC compensation topology for capacitive power transfer system to improve misalignment performance. IET Power Electron., 12 (10), 2626–2633, 2019. https:// doi.org/10.1049/iet-pel.2018.5606.
  • S. K. Mishra, R. Adda, S. Sekhar, A. Joshi, and A. K. Rathore, Power transfer using portable surfaces in capacitively coupled power transfer technology. IET Power Electron., 9 (5), 997–1008, 2016. https:// doi.org/10.1049/iet-pel.2015.0332.
  • J. Lian, X. Qu, An LCLC-LC-compensated capacitive power transferred battery charger with near-unity power factor and configurable charging profile. IEEE Trans. Ind. Appl., 58 (1), 1053–1060, 2022. https://doi.org/10.1109/TIA.2021.3089448
  • D. A. I. Xin and S. U. N. Min, Generalized hamiltonian energy modeling method for wireless power transfer system. 8th International Conference on Power Electronics Systems and Applications, Hong Kong, China, 07-10 December 2020. https://doi.org/10.1109/PESA50370.2020.9344047.
  • J. Lian and X. Qu, Design of a double-sided LC compensated capacitive power transfer system with capacitor voltage stress optimization. IEEE Trans. Circuits Syst. II Express Briefs, 67 (4), 715–719, 2020, https://doi.org/10.1109/TCSII.2019.2918648.
  • J. Dai, and D. C. Ludois, Single active switch power electronics for kilowatt scale capacitive power transfer. IEEE J. Emerg. Sel. Top. Power Electron., 3 (1), 315–323, 2015. https://doi.org/10.1109/JEST PE.2014.2334621.
  • A. S. Haritha and J. K. Jose, A reliable inverter for wireless power transfer applications. Int. Conf. Circuits Syst. Digit. Enterp. Technol. pp 1–5, Kottayam, India, 21-22 December 2018. https://doi .org/10.1109/ICCSDET.2018.8821139
  • C. Jiang, K. T. Chau, C. Liu, C. H. T. Lee, An overview of resonant circuits for wireless power transfer, Energies, 10 (7), 1-22, 2017. https://doi.org /10.3390/en10070894.
  • D. H. Nguyen, Dynamic optical wireless power transfer for electric vehicles. IEEE Access, 11, 2787–2795, 2023. https://doi.org/10.1109/ACCESS. 2023.3234577.
  • A. Mohammadnia, B. M. Ziapour, H. Ghaebi, and M. H. Khooban, Feasibility assessment of next-generation drones powering by laser-based wireless power transfer. Opt. Laser Technol., 143, 1-8, 2021. https://doi.org/10.1016/j.optlastec.2021.107283.
  • Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, Distributed laser charging: a wireless power transfer approach. IEEE Internet Things J., 5 (5), 3853–3864, 2018. https://doi.org/10.1109/JIOT.20 18.2851070.
  • K. Jin and W. Zhou, Wireless laser power transmission : a review of recent progress. IEEE Trans. Power Electron, 34 (4), 3842–3859, 2019. https://doi.org/10.1109/TPEL.2018.2853156
  • Y. Rathod and L. Hughes, Simulating the charging of electric vehicles by laser. Procedia Comput. Sci., 155, 527–534, 2019. https://doi.org/10.1016/j.pro cs.2019.08.073.
  • K. J. Pai, Temperature rise effects on dynamic resistances for laser diodes with a wavelength of 450 nm for vehicle headlight applications. IEEE Trans. Veh. Technol., 68 (10), 9529–9542, 2019. https://doi .org/10.1109/TVT.2019.2929225.
  • V. A. Bogushevskaya et al., An experimental investigation of the feasibility of using silicone and gallium arsenide solar batteries on space vehicles for receiving energy of laser infrared emission. Therm. Eng, 59 (13), 975–980, 2012. https://doi.org/10.1 134/S0040601512130034.
  • U. F. Shaikh, A. Das, A. Barai, and I. Masters, Electro-thermo-mechanical behaviours of laser joints for electric vehicle battery ınterconnects. 2019 Electr. Veh. Int. Conf. EV 2019, pp. 1–6, Bucharest, Romania, 03-04 October 2019. https://doi.org/10.11 09/EV.2019.8892972.
  • T. Li et al., A novel design of microstrip patch ante nna array with modified-I-shaped electroma gnetic metamaterials applied in microwa ve wireless power transmission. Optik (Stuttg)., 173, 193–205, 2018. https://doi.org/10.10 16/j.ijleo.2018.08.012.
  • W. Li, R. Li, J. Dong, J. Yang, and X. Zhang, Demonstration of a microwave photonic radar for high-resolution vehicle sar/isar imaging. Int. Top. Meet. Microw. Photonics, pp. 1–3, Ottawa, Canada, 07-10 October 2019. https://doi.org/10.1109/MWP .2019.8892002.
  • J. D. Castro, S. Singh, A. Arora, S. Louie, and D. Senic, Enabling safe autonomous vehicles by advanced mm-wave radar simulations. MTT-S Int. Microw. Symp. Dig., pp. 1476–1479, Boston, MA, USA, 02-07 June 2019. https://doi.org/10.1109/mws ym.2019.8700843.
  • C. Wang, W. Xu, C. Zhang, M. Wang, and X. Wang, Microwave wireless power transmission technology index system and test evaluation methods. EURASIP J. Adv. Signal Process., 16, 1-11, 2022. https://doi.org/10.1186/s13634-022-00846-7.
  • C. Wang, W. Xu, C. Zhang, M. Wang, X. Wang, Microwave wireless power transmission technology index system and test evaluation methods. EURASIP Journal on Advances in Signal Processing 16, 1–11, 2022. https://doi.org/10.1186/s13634-022-00846-7
  • I. Ahmed, E. A. Elghanam, M. S. Hassan, and A. Osman, Study of the feasibility of using microwave power transfer for dynamic wireless electric vehicle charging. Transp. Electrif. Conf. Expo, pp. 365–370, Chicago, IL, USA, 23-26 June 2020. https://doi.org/ 10.1109/ITEC48692.2020.9161475.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Makaleler
Yazarlar

Ahmet Hamdi Reyhan Bu kişi benim 0009-0003-4681-2207

Ahmet Doğan 0000-0002-9552-1997

Proje Numarası -
Erken Görünüm Tarihi 23 Ağustos 2023
Yayımlanma Tarihi 15 Ekim 2023
Gönderilme Tarihi 31 Mayıs 2023
Kabul Tarihi 6 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 4

Kaynak Göster

APA Reyhan, A. H., & Doğan, A. (2023). Elektrikli araçların kablosuz şarj edilmesinde kullanılan güç aktarım yöntemlerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1305-1317. https://doi.org/10.28948/ngumuh.1307910
AMA Reyhan AH, Doğan A. Elektrikli araçların kablosuz şarj edilmesinde kullanılan güç aktarım yöntemlerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. Ekim 2023;12(4):1305-1317. doi:10.28948/ngumuh.1307910
Chicago Reyhan, Ahmet Hamdi, ve Ahmet Doğan. “Elektrikli araçların Kablosuz şarj Edilmesinde kullanılan güç aktarım yöntemlerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 4 (Ekim 2023): 1305-17. https://doi.org/10.28948/ngumuh.1307910.
EndNote Reyhan AH, Doğan A (01 Ekim 2023) Elektrikli araçların kablosuz şarj edilmesinde kullanılan güç aktarım yöntemlerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1305–1317.
IEEE A. H. Reyhan ve A. Doğan, “Elektrikli araçların kablosuz şarj edilmesinde kullanılan güç aktarım yöntemlerinin incelenmesi”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 4, ss. 1305–1317, 2023, doi: 10.28948/ngumuh.1307910.
ISNAD Reyhan, Ahmet Hamdi - Doğan, Ahmet. “Elektrikli araçların Kablosuz şarj Edilmesinde kullanılan güç aktarım yöntemlerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (Ekim 2023), 1305-1317. https://doi.org/10.28948/ngumuh.1307910.
JAMA Reyhan AH, Doğan A. Elektrikli araçların kablosuz şarj edilmesinde kullanılan güç aktarım yöntemlerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12:1305–1317.
MLA Reyhan, Ahmet Hamdi ve Ahmet Doğan. “Elektrikli araçların Kablosuz şarj Edilmesinde kullanılan güç aktarım yöntemlerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 4, 2023, ss. 1305-17, doi:10.28948/ngumuh.1307910.
Vancouver Reyhan AH, Doğan A. Elektrikli araçların kablosuz şarj edilmesinde kullanılan güç aktarım yöntemlerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1305-17.

download