Loading [a11y]/accessibility-menu.js
Review
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 3, 194 - 204, 30.09.2024
https://doi.org/10.56766/ntms.1537521

Abstract

References

  • Consortium MHCS. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999; 401(6756):921-23.
  • Zhang Q, Reed EF. The importance of non-HLA antibodies in transplantation. Nat Rev Nephrol. 2016; 12(8):484-95.
  • Singh N, Pirsch J, Samaniego M. Antibody-mediated rejection: treatment alternatives and outcomes. Transplant Rev. 2009; 23(1):34-46.
  • Kauke T, Oberhauser C, Lin V, Coenen M, Fischereder M, Dick A, et al. De novo donor-specific anti-HLA antibodies after kidney transplantation are associated with impaired graft outcome independently of their C1q-binding ability. Transplant Int. 2017; 30(4):360-70.
  • Zhang Q, Cecka JM, Gjertson DW, et al. HLA and MICA: targets of antibody-mediated rejection in heart transplantation. Transplantation. 2011; 91(10):1153.
  • Zhang X, Reed EF. Effect of antibodies on endothelium. AJT. 2009;9(11):2459-65.
  • Grafft CA, Cornell LD, Gloor JM, et al. Antibody-mediated rejection following transplantation from an HLA-identical sibling. NDT. 2010; 25(1):307-10.
  • Terasaki PI. Humoral theory of transplantation. AJT. 2003; 3(6):665-73.
  • Opelz G. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet. 2005; 365(9470):1570-76.
  • Win TS, Pettigrew GJ. Humoral autoimmunity and transplant vasculopathy: when allo is not enough. Transplantation. 2010; 90(2):113-20.
  • Anderton SM, Wraith DC. Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol. 2002;2(7):487-98. 1 Rimola A, Londoño MC, Guevara G, al. Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after liver transplantation. Transplantation. 2004; 78(5):686-91. 1 van der Vliet JA, Warlé MC, Cheung CLS, Teerenstra S, Hoitsma AJ. Influence of prolonged cold ischemia in renal transplantation. Clin Transplant. 2011; 25(6):E612-16.
  • Dragun D, Catar R, Philippe A. Non-HLA antibodies in solid organ transplantation: recent concepts and clinical relevance. Curr Opin Organ Transplant. 2013; 18(4):430-355.
  • Thaunat O, Graff-Dubois S, Fabien N, et al. A stepwise breakdown of B-cell tolerance occurs within renal allografts during chronic rejection. Kidney Int. 2012; 81(2):207-19.
  • Burlingham WJ, Love RB, Jankowska-Gan E, et al. IL-17–dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007; 117(11):3498-506.
  • Reinsmoen NL. Role of angiotensin II type 1 receptor-activating antibodies in solid organ transplantation. Hum Immunol. 2013; 74(11):1474-77.
  • Cardinal H, Dieudé M, Brassard N, et al. Antiperlecan antibodies are novel accelerators of immune-mediated vascular injury. AJT. 2013;13(4):861–74.
  • Zou Y, Stastny P, Süsal C, Döhler B, Opelz G. Antibodies against MICA antigens and kidney-transplant rejection. New Eng J Med. 2007; 357(13):1293-300.
  • Uhlen M. A human protein atlas. In: The FEBS Journal. Wiley; 2009. p. 90.
  • Sumitran-Karuppan S, Tyden G, Reinholt F, Berg U, Moller E. Hyperacute rejections of two consecutive renal allografts and early loss of the third transplant caused by non-HLA antibodies specific for endothelial cells. Transpl Immunol. 1997; 5(4):321-27.
  • Baranwal AK, Mehra NK. Major histocompatibility complex class I chain-related A (MICA) molecules: relevance in solid organ transplantation. Front Immunol. 2017; 8:182.
  • Carapito R, Bahram S. Genetics, genomics, and evolutionary biology of NKG 2D ligands. Immunol Rev. 2015; 267(1):88-116.
  • Tonnerre P, Gérard N, Chatelais M, et al. MICA variant promotes allosensitization after kidney transplantation. JASN. 2013; 24(6):954–66.
  • Lin D, Lavender H, Soilleux EJ, O’Callaghan CA. NF-κB regulates MICA gene transcription in endothelial cell through a genetically inhibitable control site. J Biol Chem. 2012; 287(6):4299-310.
  • Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jüpner A, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT 1 receptor. J Clin Invest. 1999; 103(7):945-52.
  • Kill A, Tabeling C, Undeutsch R, et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther. 2014; 16(1):1-12.
  • Günther J, Kill A, Becker MO, et al. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res Ther. 2014; 16:1-14.
  • Nascimbene A, Neelamegham S, Frazier OH, Moake JL, Dong J fei. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood. 2016; 127(25):3133-41.
  • Dragun D, Catar R, Philippe A. Non-HLA antibodies against endothelial targets bridging allo-and autoimmunity. Kidney Int. 2016; 90(2):280-88.
  • Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol-Heart Circ Physiol. 2016; 310(2):H137-52.
  • Reinsmoen NL, Lai CH, Heidecke H, et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation. 2010; 90(12):1473-77.
  • Kelsch R, Everding AS, Kuwertz-Bröking E, et al. Accelerated kidney transplant rejection and hypertensive encephalopathy in a pediatric patient associated with antibodies against angiotensin type 1 receptor and HLA class II. Transplantation. 2011; 92(10):e57-79.
  • Fuss A, Hope CM, Deayton S, et al. C 4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies. Nephrology. 2015; 20(7):467-73.
  • Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab. 2015; 308(6):E435-49.
  • Divanyan T, Acosta E, Patel D, Constantino D, Lopez-Soler RI. Anti-vimentin antibodies in transplant and disease. Hum Immunol. 2019; 80(8):602-607.
  • Rampersad C, Shaw J, Gibson IW, et al. Early antibody-mediated kidney transplant rejection associated with anti-vimentin antibodies: a case report. AJKD. 2020; 75(1):138-43.
  • Rose ML. Role of anti-vimentin antibodies in allograft rejection. Hum Immunol. 2013; 74(11):1459-62.
  • Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM. Vimentin is secreted by activated macrophages. Nat Cell Biol. 2003; 5(1):59-63.
  • Liebscher F, Arnold T, Liang Y, Reiter T, Böhmig G, Oehler R. Vimentin cleavage in end-stage renal disease is not related to apoptosis. Open Medicine. 2013; 8(3):297-301.
  • Besarani D, Cerundolo L, Smith JD, et al. Role of anti-vimentin antibodies in renal transplantation. Transplantation. 2014; 98(1):72-78.
  • Simonson MS. Endothelins: multifunctional renal peptides. Physiol Rev. 1993; 73(2):375-411.
  • Maguire JJ, Davenport AP. Endothelin receptors and their antagonists. In: Seminars in nephrology. Elsevier; 2015. p.125-36.
  • Philogene MC, Johnson T, Vaught AJ, Zakaria S, Fedarko N. Antibodies against angiotensin II type 1 and endothelin A receptors: relevance and pathogenicity. Hum Immunol. 2019; 80(8):561-67.
  • Banasik M, Boratyńska M, Kościelska-Kasprzak K, al. The impact of non-HLA antibodies directed against endothelin-1 type A receptors (ETAR) on early renal transplant outcomes. Transpl Immunol. 2014; 30(1):24-29.
  • Pearl MH, Chen L, ElChaki R, et al. Endothelin type A receptor antibodies are associated with angiotensin II type 1 receptor antibodies, vascular inflammation, and decline in renal function in pediatric kidney transplantation. Kidney Int Rep. 2020; 5(11):1925-36.
  • Kamburova EG, Gruijters ML, Kardol-Hoefnagel T, et al. Antibodies against ARHGDIB are associated with long-term kidney graft loss. AJT. 2019; 19(12):3335-44.
  • Senev A, Otten HG, Kamburova EG, Callemeyn J, Lerut E, Van Sandt V, et al. Antibodies against ARHGDIB and ARHGDIB gene expression associate with kidney allograft outcome. Transplantation. 2020; 104(7):1462-71.
  • Betjes MGH, Sablik KA, Litjens NHR, Otten HG, de Weerd AE. ARHGDIB and AT1R autoantibodies are differentially related to the development and presence of chronic antibody-mediated rejection and fibrosis in kidney allografts. Hum Immunol. 2021; 82(2):89-96.
  • Gloerich J, Ruiter JPN, Van Den Brink DM, Ofman R, Ferdinandusse S, Wanders RJA. Peroxisomal trans-2-enoyl-CoA reductase is involved in phytol degradation. FEBS Lett. 2006; 580(8):2092-96.
  • Dinavahi R, George A, Tretin A, et al. Antibodies reactive to non-HLA antigens in transplant glomerulopathy. J Am Soc Nephrol. 2011; 22(6):1168-78.
  • Padanilam BJ. Induction and subcellular localization of protein kinase C isozymes following renal ischemia. Kidney Int. 2001; 59(5):1789-97.
  • Sutherland SM, Li L, Sigdel TK, et al. Protein microarrays identify antibodies to protein kinase Cζ that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 2009; 76(12):1277-83.
  • Yu D, Li H, Liu Y, , et al. The Reference Intervals for Serum C-Terminal Agrin Fragment in Healthy Individuals and as a Biomarker for Renal Function in Kidney Transplant Recipients. J Clin Lab Anal. 2017; 31(3):e22059.
  • Steubl D, Hettwer S, Vrijbloed W, et al. C-terminal agrin fragment-a new fast biomarker for kidney function in renal transplant recipients. Am J Nephrol. 2014; 38(6):501-508.
  • Steubl D, Vogel A, Hettwer S, al. Early postoperative C-terminal agrin fragment (CAF) serum levels predict graft loss and proteinuria in renal transplant recipients. CCLM. 2016; 54(1):63-72.
  • Lv H, Havari E, Pinto S, Gottumukkala RV, Cornivelli L, Raddassi K, et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest. 2011; 121(4):1561-73.
  • Kalache S, Dinavahi R, Pinney S, Mehrotra A, Cunningham MW, Heeger PS. Anticardiac myosin immunity and chronic allograft vasculopathy in heart transplant recipients. J Immunol. 2011; 187(2):1023-30. Dieudé M, Cardinal H, Hébert MJ. Injury derived autoimmunity: Anti-perlecan/LG3 antibodies in transplantation. Hum Immunol. 2019; 80(8):608-13.
  • Katta K, Boersema M, Adepu S, et al. Renal heparan sulfate proteoglycans modulate fibroblast growth factor 2 signaling in experimental chronic transplant dysfunction. Am J Pathol. 2013; 183(5):1571-84.
  • Yang B, Dieudé M, Hamelin K, et al. Anti-LG3 Antibodies Aggravate Renal Ischemia-Reperfusion Injury and Long-Term Renal Allograft Dysfunction. AJT. 2016; 16(12):3416-29.
  • Padet L, Dieudé M, Karakeussian-Rimbaud A, et al. New insights into immune mechanisms of antiperlecan/LG3 antibody production: Importance of T cells and innate B1 cells. AJT 2019; 19(3):699-712.
  • Angaswamy N, Klein C, Tiriveedhi V, et al. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. AJT. 2014; 14(3):685-93.
  • Zinn AR, Alagappan RK, Brown LG, Wool I, Page DC. Structure and function of ribosomal protein S4 genes on the human and mouse sex chromosomes. Mol Cell Biol. 1994; 14(4):2485-92.
  • Tan JC, Wadia PP, Coram M, et al. HY antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation. 2008; 86(1):75-81.
  • Gratwohl A, Döhler B, Stern M, Opelz G. HY as a minor histocompatibility antigen in kidney transplantation: a retrospective cohort study. Lancet. 2008; 372(9632):49-53.
  • Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis. 2017; 20:1-24. Nguyen B, Williams AB, Young DJ, et al. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget. 2017; 8(7):10931.
  • Kokonozaki M, Tsirakis G, Devetzoglou M, et al. Potential role of FLT3-ligand in the angiogenic process of multiple myeloma. Leuk Res. 2015; 39(12):1467-72.
  • Choi EY, Chavakis E, Czabanka MA, Langer HF, Fraemohs L, Economopoulou M, et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science (1979). 2008; 322(5904):1101-14.
  • Delahunty M, Zennadi R, Telen MJ. LW protein: a promiscuous integrin receptor activated by adrenergic signaling. Transfus Clin Biol. 2006; 13(1–2):44-49.
  • Maduell F, Moreso F, Pons M, et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013; 24(3):487-97.
  • Sorohan BM, Baston C, Tacu D, Bucșa C, Țincu C, Vizireanu P, et al. Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights. Biomedicines. 2022; 10(7):1506.
  • Gutiérrez-Larrañaga M, López-Hoyos M, Renaldo A, San Segundo D. Non-HLA Abs in Solid Organ Transplantation. Transplantology. 2020; 1(1):24-41.

Transplantation Genetics: The Importance of non-HLA Antibodies, Genetic Insights and Future Perspectives

Year 2024, Volume: 5 Issue: 3, 194 - 204, 30.09.2024
https://doi.org/10.56766/ntms.1537521

Abstract

Solid organ transplantation is an effective and life-saving treatment method for patients with end-stage organ failure. Immunological evaluation is of great importance in the achievement of transplantation, and the determination of HLA incompatibility forms the basis of immunological transplantation success. The presence of donor HLA-related antibodies is known to be asssociated with graft loss and decreased survival rates. However, recent studies have shown clinical and experimental findings related to the important role of non-HLA antibodies in the antibody-mediated rejection and chronic rejection process.
The mechanisms triggering auto-antibody production in organ transplantation are an important area of research. These mechanisms stimulate auto-antibody production in the patient causing the expression of organ-origin autoantigens such as ischaemia-reperfusion damage, surgical trauma, alloimmune responses, soluble antigens, extracellular vesicles and apoptotic bodies. In patients with a risk of non-HLA antibody-mediated rejection, there is an urgent need to determine the recipient immunological phenotypes, both for the development of targetted treatments and to increase both graft and patient survival. The aim of this review was to evaluate non-HLA antibody types and their effects on transplantation.

References

  • Consortium MHCS. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999; 401(6756):921-23.
  • Zhang Q, Reed EF. The importance of non-HLA antibodies in transplantation. Nat Rev Nephrol. 2016; 12(8):484-95.
  • Singh N, Pirsch J, Samaniego M. Antibody-mediated rejection: treatment alternatives and outcomes. Transplant Rev. 2009; 23(1):34-46.
  • Kauke T, Oberhauser C, Lin V, Coenen M, Fischereder M, Dick A, et al. De novo donor-specific anti-HLA antibodies after kidney transplantation are associated with impaired graft outcome independently of their C1q-binding ability. Transplant Int. 2017; 30(4):360-70.
  • Zhang Q, Cecka JM, Gjertson DW, et al. HLA and MICA: targets of antibody-mediated rejection in heart transplantation. Transplantation. 2011; 91(10):1153.
  • Zhang X, Reed EF. Effect of antibodies on endothelium. AJT. 2009;9(11):2459-65.
  • Grafft CA, Cornell LD, Gloor JM, et al. Antibody-mediated rejection following transplantation from an HLA-identical sibling. NDT. 2010; 25(1):307-10.
  • Terasaki PI. Humoral theory of transplantation. AJT. 2003; 3(6):665-73.
  • Opelz G. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet. 2005; 365(9470):1570-76.
  • Win TS, Pettigrew GJ. Humoral autoimmunity and transplant vasculopathy: when allo is not enough. Transplantation. 2010; 90(2):113-20.
  • Anderton SM, Wraith DC. Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol. 2002;2(7):487-98. 1 Rimola A, Londoño MC, Guevara G, al. Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after liver transplantation. Transplantation. 2004; 78(5):686-91. 1 van der Vliet JA, Warlé MC, Cheung CLS, Teerenstra S, Hoitsma AJ. Influence of prolonged cold ischemia in renal transplantation. Clin Transplant. 2011; 25(6):E612-16.
  • Dragun D, Catar R, Philippe A. Non-HLA antibodies in solid organ transplantation: recent concepts and clinical relevance. Curr Opin Organ Transplant. 2013; 18(4):430-355.
  • Thaunat O, Graff-Dubois S, Fabien N, et al. A stepwise breakdown of B-cell tolerance occurs within renal allografts during chronic rejection. Kidney Int. 2012; 81(2):207-19.
  • Burlingham WJ, Love RB, Jankowska-Gan E, et al. IL-17–dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007; 117(11):3498-506.
  • Reinsmoen NL. Role of angiotensin II type 1 receptor-activating antibodies in solid organ transplantation. Hum Immunol. 2013; 74(11):1474-77.
  • Cardinal H, Dieudé M, Brassard N, et al. Antiperlecan antibodies are novel accelerators of immune-mediated vascular injury. AJT. 2013;13(4):861–74.
  • Zou Y, Stastny P, Süsal C, Döhler B, Opelz G. Antibodies against MICA antigens and kidney-transplant rejection. New Eng J Med. 2007; 357(13):1293-300.
  • Uhlen M. A human protein atlas. In: The FEBS Journal. Wiley; 2009. p. 90.
  • Sumitran-Karuppan S, Tyden G, Reinholt F, Berg U, Moller E. Hyperacute rejections of two consecutive renal allografts and early loss of the third transplant caused by non-HLA antibodies specific for endothelial cells. Transpl Immunol. 1997; 5(4):321-27.
  • Baranwal AK, Mehra NK. Major histocompatibility complex class I chain-related A (MICA) molecules: relevance in solid organ transplantation. Front Immunol. 2017; 8:182.
  • Carapito R, Bahram S. Genetics, genomics, and evolutionary biology of NKG 2D ligands. Immunol Rev. 2015; 267(1):88-116.
  • Tonnerre P, Gérard N, Chatelais M, et al. MICA variant promotes allosensitization after kidney transplantation. JASN. 2013; 24(6):954–66.
  • Lin D, Lavender H, Soilleux EJ, O’Callaghan CA. NF-κB regulates MICA gene transcription in endothelial cell through a genetically inhibitable control site. J Biol Chem. 2012; 287(6):4299-310.
  • Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jüpner A, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT 1 receptor. J Clin Invest. 1999; 103(7):945-52.
  • Kill A, Tabeling C, Undeutsch R, et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther. 2014; 16(1):1-12.
  • Günther J, Kill A, Becker MO, et al. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res Ther. 2014; 16:1-14.
  • Nascimbene A, Neelamegham S, Frazier OH, Moake JL, Dong J fei. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood. 2016; 127(25):3133-41.
  • Dragun D, Catar R, Philippe A. Non-HLA antibodies against endothelial targets bridging allo-and autoimmunity. Kidney Int. 2016; 90(2):280-88.
  • Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol-Heart Circ Physiol. 2016; 310(2):H137-52.
  • Reinsmoen NL, Lai CH, Heidecke H, et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation. 2010; 90(12):1473-77.
  • Kelsch R, Everding AS, Kuwertz-Bröking E, et al. Accelerated kidney transplant rejection and hypertensive encephalopathy in a pediatric patient associated with antibodies against angiotensin type 1 receptor and HLA class II. Transplantation. 2011; 92(10):e57-79.
  • Fuss A, Hope CM, Deayton S, et al. C 4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies. Nephrology. 2015; 20(7):467-73.
  • Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab. 2015; 308(6):E435-49.
  • Divanyan T, Acosta E, Patel D, Constantino D, Lopez-Soler RI. Anti-vimentin antibodies in transplant and disease. Hum Immunol. 2019; 80(8):602-607.
  • Rampersad C, Shaw J, Gibson IW, et al. Early antibody-mediated kidney transplant rejection associated with anti-vimentin antibodies: a case report. AJKD. 2020; 75(1):138-43.
  • Rose ML. Role of anti-vimentin antibodies in allograft rejection. Hum Immunol. 2013; 74(11):1459-62.
  • Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM. Vimentin is secreted by activated macrophages. Nat Cell Biol. 2003; 5(1):59-63.
  • Liebscher F, Arnold T, Liang Y, Reiter T, Böhmig G, Oehler R. Vimentin cleavage in end-stage renal disease is not related to apoptosis. Open Medicine. 2013; 8(3):297-301.
  • Besarani D, Cerundolo L, Smith JD, et al. Role of anti-vimentin antibodies in renal transplantation. Transplantation. 2014; 98(1):72-78.
  • Simonson MS. Endothelins: multifunctional renal peptides. Physiol Rev. 1993; 73(2):375-411.
  • Maguire JJ, Davenport AP. Endothelin receptors and their antagonists. In: Seminars in nephrology. Elsevier; 2015. p.125-36.
  • Philogene MC, Johnson T, Vaught AJ, Zakaria S, Fedarko N. Antibodies against angiotensin II type 1 and endothelin A receptors: relevance and pathogenicity. Hum Immunol. 2019; 80(8):561-67.
  • Banasik M, Boratyńska M, Kościelska-Kasprzak K, al. The impact of non-HLA antibodies directed against endothelin-1 type A receptors (ETAR) on early renal transplant outcomes. Transpl Immunol. 2014; 30(1):24-29.
  • Pearl MH, Chen L, ElChaki R, et al. Endothelin type A receptor antibodies are associated with angiotensin II type 1 receptor antibodies, vascular inflammation, and decline in renal function in pediatric kidney transplantation. Kidney Int Rep. 2020; 5(11):1925-36.
  • Kamburova EG, Gruijters ML, Kardol-Hoefnagel T, et al. Antibodies against ARHGDIB are associated with long-term kidney graft loss. AJT. 2019; 19(12):3335-44.
  • Senev A, Otten HG, Kamburova EG, Callemeyn J, Lerut E, Van Sandt V, et al. Antibodies against ARHGDIB and ARHGDIB gene expression associate with kidney allograft outcome. Transplantation. 2020; 104(7):1462-71.
  • Betjes MGH, Sablik KA, Litjens NHR, Otten HG, de Weerd AE. ARHGDIB and AT1R autoantibodies are differentially related to the development and presence of chronic antibody-mediated rejection and fibrosis in kidney allografts. Hum Immunol. 2021; 82(2):89-96.
  • Gloerich J, Ruiter JPN, Van Den Brink DM, Ofman R, Ferdinandusse S, Wanders RJA. Peroxisomal trans-2-enoyl-CoA reductase is involved in phytol degradation. FEBS Lett. 2006; 580(8):2092-96.
  • Dinavahi R, George A, Tretin A, et al. Antibodies reactive to non-HLA antigens in transplant glomerulopathy. J Am Soc Nephrol. 2011; 22(6):1168-78.
  • Padanilam BJ. Induction and subcellular localization of protein kinase C isozymes following renal ischemia. Kidney Int. 2001; 59(5):1789-97.
  • Sutherland SM, Li L, Sigdel TK, et al. Protein microarrays identify antibodies to protein kinase Cζ that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 2009; 76(12):1277-83.
  • Yu D, Li H, Liu Y, , et al. The Reference Intervals for Serum C-Terminal Agrin Fragment in Healthy Individuals and as a Biomarker for Renal Function in Kidney Transplant Recipients. J Clin Lab Anal. 2017; 31(3):e22059.
  • Steubl D, Hettwer S, Vrijbloed W, et al. C-terminal agrin fragment-a new fast biomarker for kidney function in renal transplant recipients. Am J Nephrol. 2014; 38(6):501-508.
  • Steubl D, Vogel A, Hettwer S, al. Early postoperative C-terminal agrin fragment (CAF) serum levels predict graft loss and proteinuria in renal transplant recipients. CCLM. 2016; 54(1):63-72.
  • Lv H, Havari E, Pinto S, Gottumukkala RV, Cornivelli L, Raddassi K, et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest. 2011; 121(4):1561-73.
  • Kalache S, Dinavahi R, Pinney S, Mehrotra A, Cunningham MW, Heeger PS. Anticardiac myosin immunity and chronic allograft vasculopathy in heart transplant recipients. J Immunol. 2011; 187(2):1023-30. Dieudé M, Cardinal H, Hébert MJ. Injury derived autoimmunity: Anti-perlecan/LG3 antibodies in transplantation. Hum Immunol. 2019; 80(8):608-13.
  • Katta K, Boersema M, Adepu S, et al. Renal heparan sulfate proteoglycans modulate fibroblast growth factor 2 signaling in experimental chronic transplant dysfunction. Am J Pathol. 2013; 183(5):1571-84.
  • Yang B, Dieudé M, Hamelin K, et al. Anti-LG3 Antibodies Aggravate Renal Ischemia-Reperfusion Injury and Long-Term Renal Allograft Dysfunction. AJT. 2016; 16(12):3416-29.
  • Padet L, Dieudé M, Karakeussian-Rimbaud A, et al. New insights into immune mechanisms of antiperlecan/LG3 antibody production: Importance of T cells and innate B1 cells. AJT 2019; 19(3):699-712.
  • Angaswamy N, Klein C, Tiriveedhi V, et al. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. AJT. 2014; 14(3):685-93.
  • Zinn AR, Alagappan RK, Brown LG, Wool I, Page DC. Structure and function of ribosomal protein S4 genes on the human and mouse sex chromosomes. Mol Cell Biol. 1994; 14(4):2485-92.
  • Tan JC, Wadia PP, Coram M, et al. HY antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation. 2008; 86(1):75-81.
  • Gratwohl A, Döhler B, Stern M, Opelz G. HY as a minor histocompatibility antigen in kidney transplantation: a retrospective cohort study. Lancet. 2008; 372(9632):49-53.
  • Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis. 2017; 20:1-24. Nguyen B, Williams AB, Young DJ, et al. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget. 2017; 8(7):10931.
  • Kokonozaki M, Tsirakis G, Devetzoglou M, et al. Potential role of FLT3-ligand in the angiogenic process of multiple myeloma. Leuk Res. 2015; 39(12):1467-72.
  • Choi EY, Chavakis E, Czabanka MA, Langer HF, Fraemohs L, Economopoulou M, et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science (1979). 2008; 322(5904):1101-14.
  • Delahunty M, Zennadi R, Telen MJ. LW protein: a promiscuous integrin receptor activated by adrenergic signaling. Transfus Clin Biol. 2006; 13(1–2):44-49.
  • Maduell F, Moreso F, Pons M, et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013; 24(3):487-97.
  • Sorohan BM, Baston C, Tacu D, Bucșa C, Țincu C, Vizireanu P, et al. Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights. Biomedicines. 2022; 10(7):1506.
  • Gutiérrez-Larrañaga M, López-Hoyos M, Renaldo A, San Segundo D. Non-HLA Abs in Solid Organ Transplantation. Transplantology. 2020; 1(1):24-41.
There are 70 citations in total.

Details

Primary Language English
Subjects Transplantation, Immunology (Other)
Journal Section Review
Authors

Merve Aykaç 0000-0003-0212-3760

Necip Altundaş 0000-0002-5165-638X

Eda Balkan 0000-0002-7065-8161

Publication Date September 30, 2024
Submission Date August 22, 2024
Acceptance Date September 28, 2024
Published in Issue Year 2024 Volume: 5 Issue: 3

Cite

EndNote Aykaç M, Altundaş N, Balkan E (September 1, 2024) Transplantation Genetics: The Importance of non-HLA Antibodies, Genetic Insights and Future Perspectives. New Trends in Medicine Sciences 5 3 194–204.