Review
BibTex RIS Cite

Age-related declines in stem cell function: Molecular insights and future therapies

Year 2025, Volume: 42 Issue: 2, 170 - 198, 30.06.2025

Abstract

Stem cells are fundamental units that support tissue homeostasis throughout life, thus, progressive loss of function with aging would result in defective maintenance and regeneration of tissues, which in turn increases vulnerability to age-associated diseases. This review summarizes the potential contributors such as telomere shortening, DNA damage accumulation, epigenetic changes and mitochondrial dysfunction to age-associated defects in stem cell function. We discuss the interactions of these intrinsic factors with changes in the stem cell niche, including blood-derived inflammatory signals and changes in the extracellular matrix that contribute to stem cell exhaustion. Despite this local accessibility and its known role in regeneration, our knowledge about the age-related loss of tissue-specific regenerative potential is limited largely to age-related changes in specific stem cell populations, including hematopoietic, mesenchymal, neural, muscle satellite and intestinal stem cells, and highlights the potential for tissue-specific regenerative impediments. Further, new therapeutic strategies against stem cell exhaustion are discussed, such as caloric restriction, genetic and epigenetic reprogramming, senolytics, stem cell transplantation, and mitochondrial-targeted therapies. It also discusses challenges in tumorigenesis, immune rejection, and long-term efficacy. The review then ends with a reminder of the importance of ongoing studies for generating applicable treatments to prolong healthy life and promote regenerative responses. The present extensive synthesis is intended to assist further regenerative medicine efforts by presenting the most promising therapies to counteract aging effects on stem cells.

Ethical Statement

Not applicable

Supporting Institution

Graphic Era Hill University

References

  • Xia H, Jungebluth P, Baiguera S, Mazzanti B, Macchiarini P. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater. 2018;3(7):174–93.
  • He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009;25:377–406.
  • Chiba S. Hematopoietic stem cell. Nippon Rinsho. 2008;66(3):439–43.
  • Cahan P, Daley GQ. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol. 2013;14(6):357–68.
  • Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506–19.
  • Shyh‑Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Dev. 2013;140(12):2535–47.
  • Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007;8(9):703–13.
  • Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441(7097):1080–86. Weissman IL. Stem cells: Units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157–68.
  • Mejia‑Ramirez E, Florian MC. Understanding intrinsic hematopoietic stem cell aging. Haematologica. 2020;105(1):22–37.
  • Yao B, Huang S, Gao D, Xie J, Liu N, Fu X. Age‑associated changes in regenerative capabilities of mesenchymal stem cell: Impact on chronic wounds repair. Int Wound J. 2016;13(6):1252–59.
  • Pietras EM, Warr MR, Passegué E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011;195(5):709–20.
  • Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53.
  • Ahani‑Nahayati M, Nouri‑Zaniani F, Dehnavi M, Changizian M, Jorfi M, Mobasheri S, et al. Stem cell in neurodegenerative disorders; an emerging strategy. Int J Dev Neurosci. 2021;81(4):291–311.
  • Chen F, Liu Y, Wong NK, Xiao J, So KF. Oxidative Stress in Stem Cell Aging. Cell Transplant. 2017;26(9):1483–95.
  • Fruehauf S, Seggewiss R. It’s moving day: Factors affecting peripheral blood stem mobilization and strategies for improvement. Br J Haematol. 2003;122(3):360–75.
  • Biswas A, Hutchins R. Embryonic stem cells. Stem Cells Dev. 2007;16(2):213–21.
  • Rippon HJ, Bishop AE. Embryonic stem cells. Cell Prolif. 2004;37(1):23–34.
  • Aversano S, Caiazza C, Caiazzo M. Induced pluripotent stem cell‑derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures. Front Aging Neurosci. 2022;14:1069482.
  • Strässler ET, Aalto‑Setälä K, Kiamehr M, Landmesser U, Kränkel N. Age Is Relative—Impact of Donor Age on Induced Pluripotent Stem Cell‑Derived Cell Functionality. Front Cardiovasc Med. 2018;5:25.
  • Al‑Azab M, Safi M, Idiiatullina E, Al‑Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett. 2022;27(1). 
  • Dorronsoro A, Gattazzo F, Urciuolo A, Ciusani E, Giacometti S, Bonaldo P, et al. Mesenchymal stem cell‑derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. Aging Cell. 2021;20(4):e13337.
  • Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity‑Associated Cardiovascular Diseases. Cells. 2023;12(5).
  • Kim SW, Park J‑H, Lee E‑J, Kim H‑J, Kang G‑H, Han S‑H, et al. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease: Midbrain organoid‑NSCs (Og‑NSC) as a stable source for PD treatment. Prog Neurobiol. 2021;204:102086.
  • Zenzmaier C, Untergasser G, Berger P. Aging of the prostate epithelial stem/progenitor cell. Exp Gerontol. 2008;43(11):981–85.
  • MMoorefield EC, Andres SF, Blue RE, Van Landeghem L, Mah AT, Santoro MA, et al. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging (Albany NY). 2017;9(8):1898–1915.
  • Hall JK, Banks GB, Chamberlain JS, Olwin BB. Tissue engineering: Prevention of muscle aging by myofiber‑associated satellite cell transplantation. Sci Transl Med. 2010;2(57):57ra84.
  • López‑Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194.
  • Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 2013;14(5):297–307.
  • Arinobu Y, Mizuno S, Chong Y, Shigematsu H, Iino T, Iwasaki H, et al. Reciprocal Activation of GATA‑1 and PU.1 Marks Initial Specification of Hematopoietic Stem Cells into Myeloerythroid and Myelolymphoid Lineages. Cell Stem Cell. 2007;1(4):416–27.
  • Kebriaei P, Madden R, Kazerooni R, Likhari P, Andersson BS, Popat U, et al. Intravenous BU plus Mel: An effective, chemotherapy-only transplant conditioning regimen in patients with ALL. Bone Marrow Transplant. 2013;48(1):26– 31.
  • McNeely T, Leone M, Yanai H, Beerman I. DNA damage in aging, the stem cell perspective. Hum Genet. 2020;139(3):309–31.
  • Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD, Zhu Y. Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest. 2022;132(15):e158450.
  • Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Harrison DE, et al. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2013;68(1):6–16.
  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol. 2013;15(1):96–102
  • Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1. Pharmacol Res. 2013;67(1):60–7.
  • Moskalev AA, Chernyagina EA, Akhmedova A, Shaposhnikov MV, Semenchenko AV, Egorov MV, et al. The role of DNA damage and repair in aging through the prism of Koch‑like criteria. Ageing Res Rev. 2013;12(2):661–84.
  • Oh J, Lee YD, Wagers AJ. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20(8):870–80.
  • Kazak L, Reyes A, Holt IJ. Minimizing the damage: Repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol. 2012;13(10):659–71.
  • Vijg J, Campisi J. Puzzles, promises and a cure for ageing. Nature. 2008;454(7208):1065–71.
  • Faggioli F, Wang T, Vijg J, Montagna C. Chromosome‑specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet. 2012;21(24):5246–53.
  • Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12(10):1133–8.
  • Blagosklonny MV. Aging: ROS or TOR. Cell Cycle. 2008;7(21):3344–54.
  • Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.
  • Burtner CR, Kennedy BK. Progeria syndromes and ageing: What is the connection? Nat Rev Mol Cell Biol. 2010;11(8):567–78.
  • Kenyon CJ. The genetics of ageing. Nature. 2010;464(7288):504–12.
  • Gems D, Partridge L. Genetics of longevity in model organisms: Debates and paradigm shifts. Annu Rev Physiol. 2013;75:621–44.
  • Vijg J. Aging of the Genome: The dual role of DNA in life and death. In: Vijg J, editor. Aging of the Genome: The Dual Role of DNA in Life and Death. Oxford (UK): Oxford University Press; 2010. p. 1–384.
  • Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adjemian S, et al. Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20(11):1301–9.
  • Fenech M, Kirsch‑Volders M, Natarajan AT, Surralles J, Crott JW, Parry JM, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26(1):125–32.
  • Reisländer T, Groelly FJ, Tarsounas M. DNA Damage and Cancer Immunotherapy: A STING in the Tale. Mol Cell. 2020;80(1):21–28.
  • Li T, Chen ZJ. The cGAS‑cGAMP‑STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 2018;215(5):1287–99.
  • van Vugt MATM, Parkes EE. When breaks get hot: inflammatory signaling in BRCA1/2‑mutant cancers. Trends Cancer. 2022;8(3):174–89.
  • Härtlova A, Erttmann SF, Battová S, Hassell JT, Cole LE, Losa AE et al. DNA Damage Primes the Type I Interferon System via the Cytosolic DNA Sensor STING to Promote Anti‑Microbial Innate Immunity. Immunity. 2015;42(2):332– 43.
  • Kondo T, Kawai T, Hopkinson SB, Quill H, Liu YL, Palefsky JM, et al. DNA damage sensor MRE11 recognizes cytosolic double‑stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci U S A. 2013;110(8):2969–74.
  • Brzostek‑Racine S, Gordon C, Van Scoy S, Reich NC. The DNA Damage Response Induces IFN. J Immunol. 2011;187(10):5336–45.
  • Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age‑related inflammation. Nat Rev Immunol. 2023;23(2):75–89.
  • Sun D, Luo Y, Ren J, Tong P, Cazzonelli CI, Prowse DM, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self‑renewal. Cell Stem Cell. 2014;14(5):673–88.
  • Grants JM, Rajasekhar VK, Xiao Y, ... et al. Altered microRNA expression links IL6 and TNF‑induced inflammaging with myeloid malignancy in humans and mice. Blood. 2020;135(25):2235–51.
  • Yanai H, Beerman I, McNeely T, Leone M. DNA methylation drives hematopoietic stem cell aging phenotypes after proliferative stress. GeroScience. 2024; doi:10.1007/s11357‑024‑01360‑4.
  • Rimmelé P, Bigarella CL, Liang R, Izac B, Dieguez D, Barbet G, et al. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports. 2014;3(1):44–59.
  • Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ, et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 2015;25(12):1860–72.
  • Pang WW, Schrier SL, Weissman IL. Age-associated changes in human hematopoietic stem cells. Semin Hematol. 2017;54(1):39–42.
  • Montazersaheb S, Ehsani A, Fathi E, Farahzadi R. Cellular and molecular mechanisms involved in hematopoietic stem cell aging as a clinical prospect. Oxid Med Cell Longev. 2022;2022:2713483.
  • Tümpel S, Rudolph KL. Aging stem cells: Transcriptome meets epigenome meets methylome. Cell Stem Cell. 2014;14(5):551–2
  • Anonymous. Looking Back: Aging and Regeneration. Cell Stem Cell. 2017;20(6):757.
  • Zhang Y, Zhang R, Cao H, Liu C, Chen X, Wang S, et al. Preparation of Rutin–Whey Protein Pickering Emulsion and Its Effect on Zebrafish Skeletal Muscle Movement Ability. Nutrients. 2024;16(18):3050.
  • Liu H, Chen W, Zhang J, Li Y, Wang F, Zhao L, et al. A causal relationship between sarcopenia and cognitive impairment: A Mendelian randomization study. PLoS One. 2024;19(9):e0309124.
  • Tarum J, Ball G, Gustafsson T, Altun M, Santos L. Artificial neural network inference analysis identified novel genes and gene interactions associated with skeletal muscle aging. J Cachexia Sarcopenia Muscle. 2024;15(5):2143–55.
  • Martins GS, Moraes Junior Z, Lima CF, Santos AC, Oliveira R, Costa LV, et al. Action of melatonin and physical exercise on the liver of cirrhotic rats: Study of oxidative stress and the inflammatory process. Hepatol Forum. 2024;5(4):184–92
  • Zhao Y, Zhang L, Li Y, Chen S, Wang X, Huang H, et al. Mendelian randomization analysis reveals no causal relationship between appendectomy and inflammatory bowel disease. J Gastrointest Surg. 2024;28(7):1174–6.
  • Salminen A, Kaarniranta K, Kauppinen A, Suuronen T, Kaidanen T. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol. 2013;106–107:33–54.
  • Marzetti E, Calvani R, Cesari M, Tosato M, Di Bari M, Cherubini A, et al. Association between myocyte quality control signaling and sarcopenia in old hip-fractured patients: Results from the Sarcopenia in HIp FracTure (SHIFT) exploratory study. Exp Gerontol. 2016;80:1–5.
  • Huang DD, Wang T, Zheng J, Wang Q, Luo LJ, Liu L, et al. Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner. Exp Gerontol. 2019;119:61–73.
  • Marzetti E, Calvani R, Di Bari M, Cherubini A, Pesce V, Bevilacqua R, et al. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int J Biochem Cell Biol. 2013;45(10):2288–301.
  • Eaves CJ. Hematopoietic stem cells: Concepts, definitions, and the new reality. Blood. 2015;125(17):2605–13.
  • Safarik I, Safarikova M. Magnetic Nanoparticles: From Fabrication to Clinical Applications. In: Magnetic Nanoparticles: From Fabrication to Clinical Applications. 2012. p. 215
  • Cosgrove BD, Sacco A, Gilbert PM, Blau HM, Le Grand F, Rando TA, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20(3):255–64.
  • Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB. P38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20(3):265–71.
  • Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells. 2007;25(4):885–94.
  • Dykstra B, Olthof S, Schreuder J, Ritsema M, De Haan G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011;208(13):2691–2703.
  • Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA. Future of cancer incidence in the United States: Burdens upon an aging, changing nation. J Clin Oncol. 2009;27(17):2758–65.
  • Yancik R. Population aging and cancer: A cross-national concern. Cancer J. 2005;11(6):437–41.
  • Akunuru S, Geiger H. Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol Med. 2016;22(8):701–12.
  • Zimmermann S, Martens UM. Telomeres, senescence, and hematopoietic stem cells. Cell Tissue Res. 2008;331(1):79–90.
  • Abdallah P, Ditzel N, Kassem M, Petersen T, Salla S, Jensen C, et al. A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol. 2009;11(8):988–93.
  • Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019;20(1):1–16.
  • Moehrle BM, Geiger H. Aging of hematopoietic stem cells: DNA damage and mutations? Exp Hematol. 2016;44(10):895–901.
  • Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197(4866):452–54.
  • Adelman ER, Huang H, Orkin SH, Eisenman RN, Weissman IL, Regev A, et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 2019;9(8):1080–1101
  • Latchney SE, Calvi LM. The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin Hematol. 2017;54(1):25–32.
  • Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol. 2020;13(1):61.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.
  • Mogensen CE. The glomerular permeability determined by dextran clearance using sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82.
  • Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology. 2015;67(5):793–807
  • Ali H, Al-Mulla F. Defining umbilical cord blood stem cells. Stem Cell Discov. 2012;2(1):15–23.
  • Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transplant. 2017;26(9):1520–29.
  • Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis: its clinical features. JAMA. 1941;116(22):2465–74.
  • Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today. 2006;11(11–12):524–33.
  • Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;24(10):1150–63
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.
  • Olivieri F, Procopio AD, Rippo MR. Cellular senescence and senescence-associated secretory phenotype (SASP) in aging process. In: Hum Aging From Cell Mech to Ther Strateg. 2021. p. 75–88.
  • Datta I, Bangi E. Senescent cells and macrophages cooperate through a multi-kinase signaling network to promote intestinal transformation in Drosophila. Dev Cell. 2024;59(5):566–78.e3.
  • Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet. 2024;15:1429844.
  • Wang X, Yu F, Ye L. Epigenetic control of mesenchymal stem cells orchestrates bone regeneration. Front Endocrinol (Lausanne). 2023;14:1126787.
  • Chu DT, Lai D, Danh LV, Thao NP, Khuong NC, Van Pham P, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci. 2020;21(3):30708.
  • Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials. 2019;203:96–110.
  • Bayer SA. 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res. 1983;50(2– 3):329–40.
  • Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H. A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep. 2017;21(11):3271–84.
  • Basak O, Sarsenbayeva A, Fiorini E, MacDonald HR, Taylor V, et al. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci U S A. 2018;115(4):E610–9.
  • Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self- renewal. Nature. 2010;467(7313):323–7.
  • Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Dev. 2019;146(4):156059.
  • Basak O, Giachino C, Fiorini E, MacDonald HR, Taylor V. Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci. 2012;32(16):5654–66.
  • Åberg MAI, Åberg ND, Hedbäcker H, Oscarsson J, Eriksson PS. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci. 2000;20(8):2896–2903.
  • Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev. 2005;85(2):523–69.
  • Drapeau E, Abrous DN. Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell. 2008;7(4):569–89.
  • Ferrón S, Mira H, Franco SG, Cano J, Santisteban P, et al. Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development. 2004;131(16):4059–70.
  • Harley J, Smith J, Lee A, Brown B, Chen C, Davis D, et al. Telomere shortening induces aging-associated phenotypes in hiPSC-derived neurons and astrocytes. Biogerontology. 2024;25(2):341–60.
  • Nemirovich‑Danchenko NM, Khodanovich MY. Telomerase gene editing in the neural stem cells in vivo as a possible new approach against brain aging. Russ J Genet. 2020;56(4):387–401.
  • Limke T, Rao MS. Neural stem cells in aging and disease. J Cell Mol Med. 2002;6(4):475–96 Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol. 2024;239(4):e31187.
  • Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Serra PA, et al. Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell. 2020;19(3):e13101.
  • Martínez-Cué C, Rueda N. Cellular senescence in neurodegenerative diseases. Front Cell Neurosci. 2020;14:16.
  • Li Z, Yu Y, Yuan L, Wang B, Xu M, Yang C, et al. Alleviating oxidative damage–induced telomere attrition: A potential mechanism for inhibition by folic acid of apoptosis in neural stem cells. Mol Neurobiol. 2022;59(1):590–602.
  • Melo dos Santos LS, Trombetta-Lima M, Eggen BJL, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Res Rev. 2024;93:102141
  • Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem cells of the aging brain. Front Aging Neurosci. 2020;12:247.
  • Singh RP, Shiue K, Schomberg D, Zhou FC. Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant. 2009;18(10–11):1197–1211.
  • Fitzsimons CP, Cardenes N, Xavier ALR, Grygorczyk CC, Zahniser ML, et al. Epigenetic regulation of adult neural stem cells: implications for Alzheimer’s disease. Mol Neurodegener. 2014;9(1):25.
  • Sun J, Yang J, Miao XM, Loh HH, Pei D, Zheng H. Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. Cell Regen. 2021;10(1):1.
  • Alberti P, Semperboni S, Cavaletti G, Scuteri A. Neurons: The interplay between cytoskeleton, ion channels/transporters and mitochondria. Cells. 2022;11(16):2499.
  • Chen Q, Ruan D, Shi J, Du D, Bian C. The multifaceted roles of natural products in mitochondrial dysfunction. Front Pharmacol. 2023;14:1093038.
  • Coelho P, Fão L, Mota S, Rego AC. Mitochondrial function and dynamics in neural stem cells and neurogenesis: implications for neurodegenerative diseases. Ageing Res Rev. 2022;80:101667.
  • Bischoff R. Regeneration of single skeletal muscle fibers in vitro. Anat Rec. 1975;182(2):215–235.
  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol. 1999;144(6):1113–1121.
  • Beauchamp JR, Heslop L, Yu D, Tajbakhsh S, Kelly R, Wernig A, et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000;151(6):1221–1233.
  • Baroffio A, Hamann M, Bernheim L, Bochaton-Piallat ML, Gabbiani G, Bader CR. Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation. 1996;60(1):47–57.
  • Asakura A, Komaki M, Rudnicki MA. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 2001;68(4–5):245–253.
  • Alessandri G, Revello MG, Spinelli P, Fagioli F, Stefanini M, Biffi A, et al. Isolation and culture of human muscle- derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet. 2004;364(9448):1872– 1883.
  • Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem. 2006;54(11):1177–1191.
  • Filippelli RL, Chang NC. Empowering muscle stem cells for the treatment of Duchenne muscular dystrophy. Cells Tissues Organs. 2023;211(6):641–54.
  • Takeda S, Clemens PR, Hoffman EP. Exon-skipping in Duchenne muscular dystrophy. J Neuromuscul Dis. 2021;8(s2):S343–S358.
  • Pawlikowski B, Betta ND, Antwine T, Olwin BB. Skeletal muscle stem cell self-renewal and differentiation kinetics revealed by EdU lineage tracing during regeneration. bioRxiv. 2019;627851.
  • Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol. 2022;23(3):204–226.
  • Xu X, Wang L, Fu X, Cheng D, Liu Z, Li C, et al. Mechanism of skeletal muscle atrophy after spinal cord injury: a narrative review. Front Nutr. 2023;10:1099143.
  • Bouredji Z, Argaw A, Frenette J. The inflammatory response, a mixed blessing for muscle homeostasis and plasticity. Front Physiol. 2022;13:1032450.
  • Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol. 2022;13:892749.
  • Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology. 2008;9(4):213–228.
  • Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317(5839):807–810.
  • Sahu A, Monga P, Garcia-Martinez C, Sabater L, Fuentes P, et al. Age-related declines in α-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nat Commun. 2018;9(1):1–14.
  • Borges IBP, Oliveira DS, Marie SKN, Lenario AM, Oba-Shinjo SM, Shinjo SK. Exercise training attenuates ubiquitin- proteasome pathway and increases the genes related to autophagy on the skeletal muscle of patients with inflammatory myopathies. J Clin Rheumatol. 2021;27(6 Suppl):S224–S231
  • Bartlett DB, Firth CM, Phillips AC, Moss P, Baylis D, Syddall HE, et al. The age-related increase in low-grade systemic inflammation (Inflammaging) is not driven by cytomegalovirus infection. Aging Cell. 2012;11(5):912–5.
  • Barbieri M, Ferrucci L, Ragno E, Corsi A, Bandinelli S, Bonafè M, et al. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am J Physiol Endocrinol Metab. 2003;284(3):E481–7.
  • Abbatecola AM, Ferrucci L, Grella R, Rizzo MR, Barbieri M, Cioffi M, et al. Diverse effect of inflammatory markers on insulin resistance and insulin-resistance syndrome in the elderly. J Am Geriatr Soc. 2004;52(3):399–404.
  • Kunz HE, Lanza IR. Age-associated inflammation and implications for skeletal muscle responses to exercise. Exp Gerontol. 2023;177:112177.
  • Byun T, Karimi M, Marsh JL, Milovanovic T, Lin F, Holcombe RF. Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol. 2005;58(5):515–9.
  • Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311(5769):1880–5.
  • Potten CS. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci. 1998;353(1370):821–30.
  • Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat. 1974;141(4):537–61.
  • Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 2006;7(5):349–59.
  • Qi Z, Chen YG. Regulation of intestinal stem cell fate specification. Sci China Life Sci. 2015;58(6):570–8.
  • Alonso S, Yilmaz ÖH. Nutritional regulation of intestinal stem cells. Annu Rev Nutr. 2018;38:273–301.
  • Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–42.
  • Van Der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.
  • Jasper H. Intestinal stem cell aging: origins and interventions. Annu Rev Physiol. 2020;82:203–26.
  • Ju Z, Jiang H, Jaworski M, Rathinam C, Stanya KJ, Jiao J, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med. 2007;13(6):742–7.
  • Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol. 2007;19(2):238–45.
  • Behrens A, Van Deursen JM, Rudolph KL, Schumacher B. Impact of genomic damage and ageing on stem cell function. Nat Cell Biol. 2014;16(3):201–7.
  • Baines HL, Turnbull DM, Greaves LC. Human stem cell aging: do mitochondrial DNA mutations have a causal role? Aging Cell. 2014;13(2):201–5.
  • Bensard CL, Wisidagama DR, Olson KA, Berg JA, Krah NM, Schell JC, et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 2020;31(2):284–300.e7.
  • Lei X, Zhu Y, Wu L, Yang Y, Zhang C, Wang Z, et al. Regulation of mitochondrial quality control of intestinal stem cells in homeostasis and diseases. Antioxid Redox Signal. 2024;doi:10.1089/ars.2023.0489.
  • Vanuytsel T, Senger S, Fasano A, Shea-Donohue T. Major signaling pathways in intestinal stem cells. Biochim Biophys Acta Gen Subj. 2013;1830(2):2410–26.
  • Perrin L, Matic Vignjevic D. The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol. 2023;150–151:23–7.
  • Carulli AJ, Samuelson LC, Schnell S. Unraveling intestinal stem cell behavior with models of crypt dynamics. Integr Biol (Camb). 2014;6(3):243–57.
  • Xie X, Xu X, Zhang H, Wang J, Du X, Hou Y, et al. Effects of long-term culture on human embryonic stem cell aging. Stem Cells Dev. 2011;20(1):127–38.
  • West MD. Embryonic stem cells: prospects of regenerative medicine for the treatment of human aging. Futur Aging. 2010;451–87.
  • Chen B, Li Q, Zhao B, Wang Y, Yang C, He X, et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res Ther. 2019;10(1):142.
  • Xie X, Xu X, Zhang H, Wang J, Du X, Hou Y, et al. Effects of long-term culture on human embryonic stem cell aging. Stem Cells Dev. 2011;20(1):127–38.
  • Chen H, Guo R, Zhang Q, Guo H, Yang M, Wu Z, et al. Erk signaling is indispensable for genomic stability and self- renewal of mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2015;112(44):E5936–43.
  • Keefe DL. Telomeres, reproductive aging, and genomic instability during early development. Reprod Sci. 2016;23(12):1612–5.
  • Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells. Antioxidants (Basel). 2021;10(3):337.
  • Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, et al. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett. 2022 Jun 28;27(1):52.
  • Xu X, Zhang X, Zhao Y, Wu P, Zhu X, Wu Y, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med. 2023;55(7):1357–1370.
  • Zamfirescu AM, Yatsenko AS, Shcherbata HR. Notch signaling sculpts the stem cell niche. Front Cell Dev Biol. 2022;10:1027222.
  • Hicks MR, Pyle AD. The emergence of the stem cell niche. Trends Cell Biol. 2023;33(2):112–123.
  • Aijaz M, Ahmad M, Ansari MA, Ahmad S, Kumar A. Tools and techniques used for the development of scaffold for bone tissue regeneration: A detailed review. Biointerface Res Appl Chem. 2024;14(5):123
  • Vandiver AR, Brustad EM, Curtius K, Qiu W, van Oven CH, Peacock DL, et al. Increased mitochondrial mutation heteroplasmy induces aging phenotypes in pluripotent stem cells and their differentiated progeny. Aging Cell. 2024;24(1):e14402.
  • Wruck W, Graffmann N, Spitzhorn LS, Adjaye J. Human induced pluripotent stem cell‑derived mesenchymal stem cells acquire rejuvenation and reduced heterogeneity. Front Cell Dev Biol. 2021;9:717772.
  • Zhang C, Zhao X, Li S, Liu Y, Zhang Z, Wang X, et al. Mitochondrial transfer from induced pluripotent stem cells rescues developmental potential of in vitro fertilized embryos from aging females. Biol Reprod. 2021;104(5):1114–25.
  • Efrat S. Epigenetic memory: lessons from iPS cells derived from human β cells. Front Endocrinol (Lausanne). 2021;11:614234.
  • Yoon J, Kim J, Song H, Lee J, Park Y, Choi S, et al. Metabolic rescue ameliorates mitochondrial encephalo- cardiomyopathy in murine and human iPSC models of Leigh syndrome. Clin Transl Med. 2022;12(7):e954.
  • Ahmed ASI, Sheng MH, Wasnik S, Baylink DJ, Lau KHW. Effect of aging on stem cells. World J Exp Med. 2017;7(1):1–6.
  • Chiara M. Epigenetic regulation of stem cells. In: Encycl Cell Biol, Second Ed. 2022;6:84–98.
  • Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct. 2001;26(3):137–48.
  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.
  • Liu N, Lu M, Tian X, Han Z. Molecular mechanisms involved in self‑renewal and pluripotency of embryonic stem cells. J Cell Physiol. 2007;211(2):279–86.
  • Okamoto R, Watanabe M. Cellular and molecular mechanisms of the epithelial repair in IBD. Dig Dis Sci. 2005;50(Suppl 1):S80–S87.
  • Yamanaka S, Yamada Y, Suzuki M, Takahashi K, Otsuka J, Yamashita A, et al. Pluripotency of embryonic stem cells. Cell Tissue Res. 2008;331(1):5–22.
  • Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011;366(1575):2198–2207.
  • Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11(1):1–21.
  • Lee JY, Hong SH. Hematopoietic stem cells and their roles in tissue regeneration. Int J Stem Cells. 2020;13(1):1–12.
  • Navarro Negredo P, Yeo RW, Brunet A. Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell. 2020;27(2):202–223.
  • Díaz-García D, Filipová A, Garza-Veloz I, Martinez‑Fierro ML. A beginner’s introduction to skin stem cells and wound healing. Int J Mol Sci. 2021;22(20):11030.
  • Bjerknes M, Cheng H. Gastrointestinal stem cells II. Intestinal stem cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(3):G381–7.
  • Sirabella D, De Angelis L, Berghella L. Sources for skeletal muscle repair: mesenchymal stem cells to reprogramming. J Cachexia Sarcopenia Muscle. 2013;4(2):125–36.
  • Kajstura J, Rota M, Hall SR, Hosoda T, D’Amario D, Sanada F, et al. Cardiac stem cells and myocardial disease. J Mol Cell Cardiol. 2008;45(4):505–13.
  • Li J, Liu Y, Shen Y, Tao J, Huang H, Zhu X, et al. Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors. Front Cell Dev Biol. 2021;9:640388.
  • Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.
  • Madl CM, Heilshorn SC. Engineering hydrogel microenvironments to recapitulate the stem cell niche. Annu Rev Biomed Eng. 2018;20:21–47.
  • Di Nardo P, Minieri M, Ahluwalia A. Engineering the stem cell niche and the differentiative micro- and macro- environment: technologies and tools for applying biochemical, physical and structural stimuli and their effects on stem cells. In: Stem Cell Eng Princ Appl. 2011:41–59.
  • Votteler M, Kluger PJ, Walles H, Schenke‑Layland K. Stem cell microenvironments – unveiling the secret of how stem cell fate is defined. Macromol Biosci. 2010;10(11):1302–15.
  • Farahzadi R, Valipour B, Montazersaheb S, Fathi E. Targeting the stem cell niche micro‑environment as therapeutic strategies in aging. Front Cell Dev Biol. 2023;11:1162136.
  • Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther. 2019;10(1):1422–7.
  • Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj. 2014;1840(8):2506–19.
  • Abdul-Al M, Kyeremeh GK, Saeinasab M, Heidari Keshel S, Sefat F. Stem cell niche microenvironment: review. Bioengineering. 2021;8(8):108.
  • Ryu BY, Orwig KE, Oatley JM, Avarbock MR, Brinster RL. Effects of aging and niche microenvironment on spermatogonial stem cell self‑renewal. Stem Cells. 2006;24(6):1505–11.
  • Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem. 2008;283(15):9499–503.
  • Tatullo M, Palmieri F, Lauritano D, d’Aquino R, Papaccio G, Serpico R, et al. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: a topical review. Int J Immunopathol Pharmacol. 2016;29(1):3–8.
  • Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int. 2015;2015:167025.
  • Ahmed M, ffrench‑Constant C. Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep. 2016;2(3):197–206.
  • Conway A, Schaffer DV. Biophysical regulation of stem cell behavior within the niche. Stem Cell Res Ther. 2012;3(6):141.
  • Jhala D, Vasita R. A review on extracellular matrix mimicking strategies for an artificial stem cell niche. Polym Rev. 2015;55(4):561–95.
  • Pardo‑Saganta A, Calvo IA, Saez B, Prosper F. Role of the extracellular matrix in stem cell maintenance. Curr Stem Cell Rep. 2019;5(1):14–9.
  • Chen S, Lewallen M, Xie T. Adhesion in the stem cell niche: biological roles and regulation. Dev. 2013;140(2):255–65.
  • Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195–201.
  • Wagers AJ. The stem cell niche in regenerative medicine. Cell Stem Cell. 2012;10(4):362–9.
  • Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.
  • Gómez‑Gaviro MV, Lovell‑Badge R, Fernández‑Avilés F, Lara‑Pezzi E. The vascular stem cell niche. J Cardiovasc Transl Res. 2012;5(5):618–30.
  • Guimarães GR, Almeida PP, de Oliveira Santos L, Rodrigues LP, de Carvalho JL, Boroni M. Hallmarks of aging in macrophages: consequences to skin inflammaging. Cells. 2021;10(6):1323.
  • Teissier T, Boulanger E, Cox LS. Interconnections between inflammageing and immunosenescence during ageing. Cells. 2022;11(3):329.
  • Allen NC, Reyes NS, Lee JY, Peng T. Intersection of inflammation and senescence in the aging lung stem cell niche. Front Cell Dev Biol. 2022;10:932723.
  • Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8(1):150.
  • Lee BC, Yu KR. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep. 2020;53(2):65–73.
  • Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab. 2023;74:101755.
  • Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age‑associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 1:S4–9.
  • Hodjat M, Rezvanfar MA, Abdollahi M. A systematic review on the role of environmental toxicants in stem cells aging. Food Chem Toxicol. 2015;86:298–308.
  • Reitinger S, Zhang X, Greenspan EJ, Ladygina N, Czerwonka E, Marquez‑Curtis LA, et al. Systemic impact molds mesenchymal stromal/stem cell aging. Transfus Apher Sci. 2015;52(3):285–9.
  • Narbonne P. The effect of age on stem cell function and utility for therapy. Cell Med. 2018;10:2155179018773756
  • Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011;193(2):257–66.
  • Conboy IM, Conboy MJ, Rebo J. Systemic problems: A perspective on stem cell aging and rejuvenation. Aging (Albany NY). 2015;7(10):754–65.
  • Gopinath SD, Rando TA. Stem Cell Review Series: Aging of the skeletal muscle stem cell niche. Aging Cell. 2008;7(4):590–8.
  • Narbonne P. The effect of age on stem cell function and utility for therapy. Cell Med. 2018;10:215517901877375.
  • Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can blood-circulating factors unveil and delay your biological aging? Biomedicines. 2020;8(12):615.
  • Mikirova NA, Casciari JJ, Hunninghake R, et al. Circulating endothelial progenitor cells: a new approach to anti- aging medicine? J Transl Med. 2009;7:106.
  • Ballard VLT, Edelberg JM. Stem cells and the regeneration of the aging cardiovascular system. Circ Res. 2007;100(8):1116–27.
  • Hadjiargyrou M, O’Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J Bone Miner Res. 2014;29(11):2307–22.
  • Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting old through the blood: circulating molecules in aging and senescence of cardiovascular regenerative cells. Front Cardiovasc Med. 2017;4:62.
  • Goodell MA, Rando TA. Stem cells and healthy aging. Science. 2015;350(6265):1199–204.
  • Pishel I, Shytikov D, Orlova T, Peregudov A, Artyuhov I, Butenko G. Accelerated aging versus rejuvenation of the immune system in heterochronic parabiosis. Rejuvenation Res. 2012;15(2):239–48.
  • Conese M, Carbone A, Beccia E, Angiolillo A. The fountain of youth: a tale of parabiosis, stem cells, and rejuvenation. Open Med. 2017;12(1):376–83.
  • Conboy IM, Rando TA. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle. 2012;11(12):2260–7.
  • Ashapkin VV, Kutueva LI, Vanyushin BF. The effects of parabiosis on aging and age-related diseases. Adv Exp Med Biol. 2020;1260:107–22.
  • Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell. 2013;12(3):525–30.
  • Fröbel J, Kuppers-Munther B, von Linde M, et al. The hematopoietic bone marrow niche ecosystem. Front Cell Dev Biol. 2021;9:705410.
  • Matteini F, Mulaw MA, Florian MC. Aging of the hematopoietic stem cell niche: new tools to answer an old question. Front Immunol. 2021;12:738204.
  • Pereira AL, Galli S, Nombela-Arrieta C. Bone marrow niches for hematopoietic stem cells. HemaSphere. 2024;8(8):e133.
  • Woods K, Guezguez B. Dynamic changes of the bone marrow niche: mesenchymal stromal cells and their progeny during aging and leukemia. Front Cell Dev Biol. 2021;9:714716.
  • Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med. 2009;4(6):879–97.
  • Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci. 2012;6:70.
  • Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age‑related diseases. J Extracell Vesicles. 2021;10(12):e12154.
  • Dorronsoro A, Iglesias-Garcia O, McManus KJ, et al. Mesenchymal stem cell‑derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. Aging Cell. 2021;20(4):e13337.
  • Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell. 2018;17(2):e12734.
  • Goldberg LR. Extracellular vesicles and hematopoietic stem cell aging. Arterioscler Thromb Vasc Biol. 2021;41(8):e399–e416.
  • Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal stem cell derived extracellular vesicles in aging. Front Cell Dev Biol. 2020;8:107.
  • Fafián-Labora J, Moren-Duarte R, Puig C, et al. Influence of mesenchymal stem cell‑derived extracellular vesicles in vitro and their role in ageing. Stem Cell Res Ther. 2020;11(1):30.
  • Stahl EC, Brown BN. Cell therapy strategies to combat immunosenescence. Organogenesis. 2015;11(4):159–72.
  • Gonzalez D, Woynarowski D, Geffner L. Stem cells targeting inflammation as potential anti-aging strategies and therapies. Cell Tissue Transplant Ther. 2015;1:e19477.
  • Kaur G, Cai C. Current progress in the rejuvenation of aging stem/progenitor cells for improving the therapeutic effectiveness of myocardial repair. Stem Cells Int. 2018;2018:9308301.
  • Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20(8):870–80. doi:10.1038/nm.3651.
  • Brooks RW, Robbins PD. Treating age-related diseases with somatic stem cells. Adv Exp Med Biol. 2018;1056:29–45. doi:10.1007/978-3-319-74470-4_3.
  • Gu L, Fu R, Hong J, Ni H, Yu K, Lou H. Effects of intermittent fasting in human compared to a non-intervention diet and caloric restriction: A meta-analysis of randomized controlled trials. Front Nutr. 2022;9:871682. doi:10.3389/fnut.2022.871682.
  • López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol. 2016;594(8):2043–60. doi:10.1113/JP270543.
  • Witte AV, Fobker M, Gellner R, Knecht S, Flöel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106(4):1255–60. doi:10.1073/pnas.0808587106.
  • Weindruch R, Kayo T, Lee CK, Prolla TA. Caloric restriction mimetics: metabolic interventions. J Gerontol A Biol Sci Med Sci. 2001;56(Spec No):20–33. doi:10.1093/gerona/56.suppl_1.20.
  • Lee C, Longo VD. Dietary restriction with and without caloric restriction for healthy aging. F1000Res. 2016;5:117. doi:10.12688/f1000research.7136.1.
  • Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R. Dietary interventions to extend life span and health span based on calorie restriction. J Gerontol A Biol Sci Med Sci. 2010;65(7):695–703. doi:10.1093/gerona/glq042.
  • Sowah SA, Schmidt TSB, Moissl-Eichinger C, et al. Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Med. 2022;14(1):116. doi:10.1186/s13073- 022-01030-0.
  • Hofer SJ, Carmona-Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med. 2022;14(1):e14418. doi:10.15252/emmm.202114418.
  • Martin-Montalvo A, de Cabo R. Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid Redox Signal. 2013;19(3):310–20. doi:10.1089/ars.2012.4866.
  • Maharajan N, Vijayakumar K, Jang CH, Cho GW. Caloric restriction maintains stem cells through niche and regulates stem cell aging. J Mol Med. 2020;98(1):25–37. doi:10.1007/s00109-019-01846-1.
  • Rachakatla A, Kalashikam RR. Calorie restriction-regulated molecular pathways and its impact on various age groups: an overview. DNA Cell Biol. 2022;41(5):459–68. doi:10.1089/dna.2021.0922.
  • McCarty MF. AMPK activation – protean potential for boosting healthspan. Age (Omaha). 2014;36(2):641–63. doi:10.1007/s11357-013-9595-y.
  • Gharibi B, Farzadi S, Ghuman M, Hughes FJ. Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells. 2014;32(8):2256–66. doi:10.1002/stem.1709.
  • Phadwal K, Watson AS, Simon AK. Tightrope act: Autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci. 2013;70(1):89–103. doi:10.1007/s00018-012-1032-3.
  • Chen C, Liu Y, Liu Y, Zheng P. MTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98):ra75. doi:10.1126/scisignal.2000559.
  • Blagosklonny MV. Aging, stem cells, and mammalian target of rapamycin: a prospect of pharmacologic rejuvenation of aging stem cells. Rejuvenation Res. 2008;11(4):801–8. doi:10.1089/rej.2008.0722.
  • Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Martin A. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle. 2011;10(21):3658–77. doi:10.4161/cc.10.21.18128.
  • Libert S, Guarente L. Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu Rev Physiol. 2013;75:669–84. doi:10.1146/annurev-physiol-030212-183800.
  • Mouchiroud L, Houtkooper RH, Auwerx J. NAD+ metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol. 2013;48(4):397–408. doi:10.3109/10409238.2013.789479.
  • Taylor DM, Maxwell MM, Luthi-Carter R, Kazantsev AG. Biological and potential therapeutic roles of sirtuin deacetylases. Cell Mol Life Sci. 2008;65(24):4000–18. doi:10.1007/s00018-008-8357-y.
  • Wang C, Hao X, Zhang R. Targeting cellular senescence to combat cancer and ageing. Mol Oncol. 2022;16(18):3319–32. doi:10.1002/1878-0261.13266.
  • Paez-Ribes M, González-Gualda E, Doherty GJ, Muñoz-Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med. 2019;11(12):e10234. doi:10.15252/emmm.201810234.
  • Chang M, Dong Y, Cruickshank-Taylor AB, Gnawali G, Bi F, Wang W. Senolytic prodrugs: a promising approach to enhancing senescence-targeting intervention. ChemBioChem. 2024. doi:10.1002/cbic.202400355.
  • Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571–84. doi:10.1038/s41580-020-0259-3.
  • Yu JR, Lee J, Kim S, et al. Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv Healthc Mater. 2019;8(5):1801471. doi:10.1002/adhm.201801471.
  • Lee YH, Kim HS, Park HC, et al. Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases. Antioxidants (Basel). 2023;12(4):934. doi:10.3390/antiox12040934.
  • Meng J, Li J, Liang Q, et al. Precision redox: the key for antioxidant pharmacology. Antioxid Redox Signal. 2021;34(14):1069–82. doi:10.1089/ars.2020.8212.
  • Zinovkin RA, Lyamzaev KG, Chernyak BV. Current perspectives of mitochondria-targeted antioxidants in cancer prevention and treatment. Front Cell Dev Biol. 2023;11:1048177. doi:10.3389/fcell.2023.1048177.
  • Son MJ, Kwon Y, Son T, Cho YS. Restoration of mitochondrial NAD+ levels delays stem cell senescence and facilitates reprogramming of aged somatic cells. Stem Cells. 2016;34(12):2840–51.
  • Zhang M, Ying W. NAD+ deficiency is a common central pathological factor of a number of diseases and aging: mechanisms and therapeutic implications. Antioxid Redox Signal. 2019;30(6):890–905.
  • Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med. 2015;21(2):68–76.
  • Sharma H, Singh D, Mahant A, Sohal SK, Kesavan AK, Samiksha. Development of mitochondrial replacement therapy: a review. Heliyon. 2020;6(9):e04643.
  • Pompei M, Pompei F. Overcoming bioethical, legal, and hereditary barriers to mitochondrial replacement therapy in the USA. J Assist Reprod Genet. 2019;36(3):383–93.
  • Schultz MB, Sinclair DA. Why NAD+ declines during aging: it’s destroyed. Cell Metab. 2016;23(6):965–6.
  • Griffin MD, Ryan AE, Alagesan S, Lohan P, Treacy O, Ritter T. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far. Immunol Cell Biol. 2013;91(1):40–51.
  • Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, et al. In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev. 2008;17(6):1023–9.
  • Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm. 2005;2:8.
  • Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine. Regen Med. 2015;10(3):287–304.
  • Haworth R, Sharpe M. Accept or reject: the role of immune tolerance in the development of stem cell therapies and possible future approaches. Toxicol Pathol. 2021;49(7):1308–16.
  • Al-Zoubi A, Oweis RJ, Jarrah R, Abu-Abeeleh M, Massad D, Al-Salem M, et al. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: long-term evaluation of safety and efficacy. Cell Transplant. 2014;23(1_suppl):25–34.
  • Vij R, Stebbings KA, Kim H, Park H, Chang D. Safety and efficacy of autologous, adipose-derived mesenchymal stem cells in patients with rheumatoid arthritis: a phase I/IIa, open-label, non-randomized pilot trial. Stem Cell Res Ther. 2022;13(1):335.
  • Dzhoyashvili NA, Shen S, Rochev YA. Natural and synthetic materials for self-renewal, long-term maintenance, and differentiation of induced pluripotent stem cells. Adv Healthc Mater. 2015;4(16):2342–59.
  • van Dongen JM, Lenssen AF, Leemrijse CJ, et al. Long-term effectiveness and cost-effectiveness of an 18-week supervised exercise program in patients treated with autologous stem cell transplantation: results from the EXIST study. J Cancer Surviv. 2019;13(4):558–69.
  • Mohammedsaleh ZM. The use of patient-specific stem cells in different autoimmune diseases. Saudi J Biol Sci. 2022;29(5):3338–46.
  • Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432–49.
  • Genc K, Durnaoglu S, Genc S. Patient-specific pluripotent stem cells in neurological diseases. Stem Cells Int. 2011;2011:212487.
  • Suhel A and Aijaz M. COMPLICATIONS OF CARDIOVASCULAR DISEASE: THE IMPACT OF DIABETES, DYSLIPIDEMIA, AND METABOLIC DISORDERS. World J Pharm Res. 2024;13(21):n.p. doi:10.20959/wjpr202421-34375.
  • Yu M, Zhang X, He J, et al. Key signaling pathways in aging and potential interventions for healthy aging. Cells. 2021;10(3):660.
  • Nielsen JL, Bakula D, Scheibye-Knudsen M. Clinical trials targeting aging. Front Aging. 2022;3:820215.
  • Charitos IA, Topi S, D’Agostino A, et al. Stem cells: a historical review about biological, religious, and ethical issues. Stem Cells Int. 2021;2021:9978837.
  • Longstaff H, Schuppli CA, Preto N, Lafrenière D, McDonald M. Scientists’ perspectives on the ethical issues of stem cell research. Stem Cell Rev Rep. 2009;5(2):89–95.
  • Shapiro HT. Ethical dilemmas and stem cell research. Science. 1999;285(5436):2065.
  • King NMP, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res Ther. 2014;5(4):85.
  • Rosemann A. Challenges to international stem cell clinical trials in countries with diverging regulations. In: Stem Cells in Clinical Practice and Tissue Engineering. 2017:301–19.
  • Golchin A, Chatziparasidou A, Ranjbarvan P, Niknam Z, Ardeshirylajimi A. Embryonic stem cells in clinical trials: current overview of developments and challenges. Adv Exp Med Biol. 2021;1312:19–37.
  • Rosemann A, Sleeboom-Faulkner M. New regulation for clinical stem cell research in China: expected impact and challenges for implementation. Regen Med. 2016;11(1):5–9.
  • Rosemann A, Bortz G, Vasen F, Sleeboom-Faulkner M. Global regulatory developments for clinical stem cell research: diversification and challenges to collaborations. Regen Med. 2016;11(7):647–57.
  • Zhao H, Feng Q, Wu J, et al. Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small. 2018;14(39):e1802630.
  • Cabral M, Cheng K, Zhu D. Three-dimensional bioprinting of organoids: past, present, and prospective. Tissue Eng Part A. 2024;30(11–12):314–21.
  • Juraski AC, Mattioli-Belmonte M, Combellack EJ, Duchi S, Onofrillo C. 3D bioprinting for organ and organoid models and disease modeling. Expert Opin Drug Discov. 2023;18(9):1043–59.
  • Zhang M, Huang H. How to combine the two landmark treatment methods—allogeneic hematopoietic stem cell transplantation and chimeric antigen receptor T cell therapy together to cure high-risk B cell acute lymphoblastic leukemia? Front Immunol. 2020;11:611710.
  • Hong IS. Enhancing stem cell-based therapeutic potential by combining various bioengineering technologies. Front Cell Dev Biol. 2022;10:901661.
  • Wei M, Yang Z, Li S, Le W. Nanotherapeutic and stem cell therapeutic strategies in neurodegenerative diseases: a promising therapeutic approach. Int J Nanomedicine. 2023;18:611–26.
  • Katcher HL. Anecdotal evidence elucidates the aging process. Curr Aging Sci. 2023;17(3):175–9.
  • Zhang H, Cherian R, Jin K. Systemic milieu and age-related deterioration. GeroScience. 2019;41(3):275–84.
  • Shytikov D, Balva O, Debonneuil E, Glukhovskiy P, Pishel I. Aged mice repeatedly injected with plasma from young mice: a survival study. Biores Open Access. 2014;3(5):226–32.
  • Tripathi SS, Kumar R, Arya JK, Rizvi SI. Plasma from young rats injected into old rats induce antiaging effects. Rejuvenation Res. 2021;24(3):206–12.
There are 334 citations in total.

Details

Primary Language English
Subjects Regenerative Medicine (Incl. Stem Cells)
Journal Section Review
Authors

Suhel Alam 0009-0008-7436-9712

Moh Aijaz 0000-0002-0526-1854

Submission Date November 6, 2024
Acceptance Date May 6, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 42 Issue: 2

Cite

APA Alam, S., & Aijaz, M. (2025). Age-related declines in stem cell function: Molecular insights and future therapies. Deneysel Ve Klinik Tıp Dergisi, 42(2), 170-198.
AMA Alam S, Aijaz M. Age-related declines in stem cell function: Molecular insights and future therapies. J. Exp. Clin. Med. June 2025;42(2):170-198.
Chicago Alam, Suhel, and Moh Aijaz. “Age-Related Declines in Stem Cell Function: Molecular Insights and Future Therapies”. Deneysel Ve Klinik Tıp Dergisi 42, no. 2 (June 2025): 170-98.
EndNote Alam S, Aijaz M (June 1, 2025) Age-related declines in stem cell function: Molecular insights and future therapies. Deneysel ve Klinik Tıp Dergisi 42 2 170–198.
IEEE S. Alam and M. Aijaz, “Age-related declines in stem cell function: Molecular insights and future therapies”, J. Exp. Clin. Med., vol. 42, no. 2, pp. 170–198, 2025.
ISNAD Alam, Suhel - Aijaz, Moh. “Age-Related Declines in Stem Cell Function: Molecular Insights and Future Therapies”. Deneysel ve Klinik Tıp Dergisi 42/2 (June2025), 170-198.
JAMA Alam S, Aijaz M. Age-related declines in stem cell function: Molecular insights and future therapies. J. Exp. Clin. Med. 2025;42:170–198.
MLA Alam, Suhel and Moh Aijaz. “Age-Related Declines in Stem Cell Function: Molecular Insights and Future Therapies”. Deneysel Ve Klinik Tıp Dergisi, vol. 42, no. 2, 2025, pp. 170-98.
Vancouver Alam S, Aijaz M. Age-related declines in stem cell function: Molecular insights and future therapies. J. Exp. Clin. Med. 2025;42(2):170-98.