BibTex RIS Kaynak Göster

The Periaqueductal Gray: From Longitudinal columns to defensive behaviour

Yıl 2009, Cilt: 26 Sayı: 1, 1 - 26, 06.12.2010

Öz

Recent findings on the different functional properties of the neuroanatomical columnar subdivision of the Periaqueductal Gray (PAG) have provided a fundamental understanding for the pathophysiology of panic and anxiety disorder. In this review, we focus mainly on the prominent role of the PAG in defensive behaviour by combining both the behavioural and neuroanatomical data. We have applied the theoretical model of the “two dimensional defence system” by McNaughton and Corr (2004), and thereby constituted an organizational structure on the neuronal circuitry of the different brain regions in relation with this panic- and fear-like behaviour. It has become clear that the dorsal and lateral PAG are involved in the active emotional coping (fight and flight reaction), whereas the ventrolateral PAG is responsible for the passive emotional coping (quiescence/freezing). In this regard, the PAG and other related brain structures are working in concert with different neurotransmitters providing animals with defensive strategies in response to predatory threats. The functional roles of the PAG in these behaviours as characterized in animals warrants further translational studies in humans which may eventually lead to novel approaches in anxiety- and panic-related disorders.

Kaynakça

  • Abbar, M., 1996. [Panic disorder and panic attack]. Encephale 22 Spec No 5, 13-18.
  • Abrams, J. K., Johnson, P. L., Hollis, J. H., and Lowry, C. A., 2004. Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018, 46-57.
  • Adell, A., Carceller, A., and Artigas, F., 1991. Regional distribution of extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the brain of freely moving rats. J Neurochem 56, 709-712.
  • Altier, N., and Stewart, J., 1998. Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine. J Pharmacol Exp Ther 285, 208-215.
  • Amano, K., Tanikawa, T., Iseki, H., Kawabatake, H., Notani, M., Kawamura, H., and Kitamura, K., 1978. Single neuron analysis of the human midbrain tegmentum. Rostral mecencephalic reticulotomy for pain relief. Appl Neurophysiol 41, 66-78.
  • American-Psychiatric-Association, 1998 May. Practice guideline for the treatment of patients with panic disorder. Work Group on Panic Disorder. Am J Psychiatry 155(5 Suppl), 1-34.
  • American-Psychiatric-Association, 2000. Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition, Text Revision. Washington, DC: American Psychiatric Press.
  • An, X., Bandler, R., Ongur, D., and Price, J. L., 1998. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 401, 455-479.
  • Arnault, P., and Roger, M., 1987. The connections of the peripeduncular area studied by retrograde and anterograde transport in the rat. J Comp Neurol 258, 463-476.
  • Azmitia, E. C., and Segal, M., 1978. An autoradiographic analysis of the differential ascending projec tions of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179, 641-667.
  • Bago, M., Marson, L., and Dean, C., 2002. Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res 945, 249-258.
  • Bajic, D., Proudfit, H. K., and Van Bockstaele, E. J., 2000. Periaqueductal gray neurons monosynaptically innervate extranuclear noradrenergic dendrites in the rat pericoerulear region. J Comp Neurol 427, 649-662.
  • Bandler, R., 1982. Induction of ‘rage’ following microinjections of glutamate into midbrain but not hypothalamus of cats. Neurosci Lett 30, 183-188.
  • Bandler, R., and Depaulis, A., 1988. Elicitation of intraspecific defence reactions in the rat from midbrain periaqueductal grey by microinjection of kainic acid, without neurotoxic effects. Neurosci Lett 88, 291-296.
  • Bandler, R., and Keay, K. A., 1996. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 107, 285-300.
  • Bandler, R., and McCulloch, T., 1984. Afferents to a midbrain periaqueductal grey region involved in the ‘defense reaction’ in the cat as revealed by horseradish peroxidase. II. The diencephalon. Behav Brain Res 13, 279-285.
  • Bandler, R., McCulloch, T., and Dreher, B., 1985. Afferents to a midbrain periaqueductal grey region involved in the ‘defence reaction’ in the cat as revealed by horseradish peroxidase. I. The telencephalon. Brain Res 330, 109-119.
  • Bandler, R., and Shipley, M. T., 1994. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17, 379-389.
  • Bandler, R., and Tork, I., 1987. Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract nuclei. Neurosci Lett 74, 1-6.
  • Basbaum, A. I., and Fields, H. L., 1984. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7, 309-338.
  • Bear, M. F., Connors, B. W., and Paradiso, M. A., 2001. Neuroscience, exploring the brain 2nd edition. . Lippincott Williams & Wilkins 107, 131-153.
  • Beckett, S., and Marsden, C. A., 1997. The effect of central and systemic injection of the 5-HT1A receptor agonist 8-OHDPAT and the 5-HT1A receptor antagonist WAY100635 on periaqueductal grey-induced defence behaviour. J Psychopharmacol 11, 35-40.
  • Behbehani, M. M., 1995. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46, 575-605.
  • Behbehani, M. M., Jiang, M. R., Chandler, S. D., and Ennis, M., 1990. The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat. Pain 40, 195-204.
  • Behbehani, M. M., Park, M. R., and Clement, M. E., 1988. Interactions between the lateral hypothalamus and the periaqueductal gray. J Neurosci 8, 2780-2787.
  • Behbehani, M. M., and Zemlan, F. P., 1986. Response of nucleus raphe magnus neurons to electrical stimulation of nucleus cuneiformis: role of acetylcholine. Brain Res 369, 110-118.
  • Beitz, A. J., 1989. Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Res Bull 23, 25-35.
  • Bellgowan, P. S., and Helmstetter, F. J., 1998. The role of mu and kappa opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia. Brain Res 791, 83-89.
  • Bernard, J. F., and Bandler, R., 1998. Parallel circuits for emotional coping behaviour: new pieces in the puzzle. J Comp Neurol 401, 429-436.
  • Bertoglio, L. J., de Bortoli, V. C., and Zangrossi, H., Jr., 2007. Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Res 1156, 133-138.
  • Bertoglio, L. J., Guimaraes, F. S., and Zangrossi, H., Jr., 2006. Lack of interaction between NMDA and cholecystokinin-2 receptor- mediated neurotransmission in the dorsolateral periaqueductal gray in the regulation of rat defensive behaviors. Life Sci 79, 2238-2244.
  • Bertoglio, L. J., and Zangrossi, H., Jr., 2005. Involvement of dorsolateral periaqueductal gray cholecystokinin-2 receptors in the regulation of a panic-related behavior in rats. Brain Res 1059, 46-51.
  • Bhatia, S. C., Saha, S. N., Manchanda, S. K., and Nayar, U., 1997. Enkephalinergic mechanisms in midbrain (dPAG) in modulation of hypothalamically-induced predatory attack behaviour. Indian J Exp Biol 35, 438-442.
  • Bianchi, R., Corsetti, G., Rodella, L., Tredici, G., and Gioia, M., 1998. Supraspinal connections and termination patterns of the parabrachial complex determined by the biocytin anterograde tract-tracing technique in the rat. J Anat 193 ( Pt 3), 417
  • Blanchard, D. C., Griebel, G., and Blanchard, R. J., 2001. Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25, 205-218.
  • Blanchard, D. C., Griebel, G., and Blanchard, R. J., 2003. The Mouse Defense Test Battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 463, 97-116.
  • Blanchard, D. C., Rodgers, R. J., Hendrie, C. A., and Hori, K., 1988. ‘Taming’ of wild rats (Rattus rattus) by 5HT1A agonists buspirone and gepirone. Pharmacol Biochem Behav 31, 269-278.
  • Blanchard, R. J., and Blanchard, D. C., 1989. Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103, 70- 82.
  • Blanchard, R. J., and Blanchard, D. C., 1989. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog Neuropsychopharmacol Biol Psychiatry 13 Suppl, S3-14.
  • Borelli, K. G., Ferreira-Netto, C., Coimbra, N. C., and Brandao, M. L., 2005. Fos-like immunoreactivity in the brain associated with freezing or escape induced by inhibition of either glutamic acid decarboxylase or GABAA receptors in the dorsal periaqueductal gray. Brain Res 1051, 100-111.
  • Bourin, M., Bradwejn, J., and Koszycki, D., 1991. [Is cholecystokinin a biological support in panic attacks?]. Encephale 17, 475-479.
  • Bowery, N. G., Hudson, A. L., and Price, G. W., 1987. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20, 365-383.
  • Bradwejn, J., and Koszycki, D., 2001. Cholecystokinin and panic disorder: past and future clinical research strategies. Scand J Clin Lab Invest Suppl 234, 19-27.
  • Brandao, M. L., Anseloni, V. Z., Pandossio, J. E., De Araujo, J. E., and Castilho, V. M., 1999. Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci Biobehav Rev 23, 863-875.
  • Brandao, M. L., de Aguiar, J. C., and Graeff, F. G., 1982. GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacol Biochem Behav 16, 397-402.
  • Brandao, M. L., Di Scala, G., Bouchet, M. J., and Schmitt, P., 1986. Escape behavior produced by the blockade of glutamic acid decarboxylase (GAD) in mesencephalic central gray or medial hypothalamus. Pharmacol Biochem Behav 24, 497-501.
  • Brandao, M. L., Vianna, D. M., Masson, S., and Santos, J., 2003. [Neural organization of different types of fear: implications for the understanding of anxiety]. Rev Bras Psiquiatr 25 Suppl 2, 36-41.
  • Brodal, P., 2004. The central nervous system, structure and function 3rd edition. Oxford University Press 48-56.
  • Brown, T. G., 1915. Note on the physiology of the basal ganglia and mid-brain of the anthropoid ape, especially in reference to the act of laughter. J Physiol 49, 195-207.
  • Brutus, M., and Siegel, A., 1989. Effects of the opiate antagonist naloxone upon hypothalamically elicited affective defense behavior in the cat. Behav Brain Res 33, 23-32.
  • Budai, D., and Fields, H. L., 1998. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. J Neurophysiol 79, 677-687.
  • Cameron, A. A., Khan, I. A., Westlund, K. N., Cliffer, K. D., and Willis, W. D., 1995. The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. I. Ascending projections. J Comp Neurol 351, 568-584.
  • Cameron, A. A., Khan, I. A., Westlund, K. N., and Willis, W. D., 1995. The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections. J Comp Neurol 351, 585-601.
  • Canteras, N. S., 2002. The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol Biochem Behav 71, 481-491.
  • Canteras, N. S., Chiavegatto, S., Valle, L. E., and Swanson, L. W., 1997. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res Bull 44, 297-305.
  • Canteras, N. S., Ribeiro-Barbosa, E. R., and Comoli, E., 2001. Tracing from the dorsal premammillary nucleus prosencephalic systems involved in the organization of innate fear responses. Neurosci Biobehav Rev 25, 661-668.
  • Carden, S. E., Davachi, L., and Hofer, M. A., 1994. U50,488 increases ultrasonic vocalizations in 3-, 10-, and 18-day-old rat pups in isolation and the home cage. Dev Psychobiol 27, 65-83.
  • Carobrez, A. P., 2003. [Glutamatergic neurotransmission as molecular target in anxiety]. Rev Bras Psiquiatr 25 Suppl 2, 52-58.
  • Carrive, P., and Bandler, R., 1991. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study. Brain Res 541, 206-215.
  • Cassell, M. D., Gray, T. S., and Kiss, J. Z., 1986. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J Comp Neurol 246, 478-499.
  • Chaouloff, F., 2000. Serotonin, stress and corticoids. J Psychopharmacol 14, 139-151.
  • Chen, S., and Aston-Jones, G., 1995. Anatomical evidence for inputs to ventrolateral medullary catecholaminergic neurons from the midbrain periaqueductal gray of the rat. Neurosci Lett 195, 140-144.
  • Chieng, B., Keay, K. A., and Christie, M. J., 1995. Increased fos-like immunoreactivity in the periaqueductal gray of anaesthetised rats during opiate withdrawal. Neurosci Lett 183, 79-82.
  • Clement, C. I., Keay, K. A., Owler, B. K., and Bandler, R., 1996. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat. J Comp Neurol 366, 495-515.
  • Clemente, C. D., and Chase, M. H., 1973. Neurological substrates of aggressive behavior. Annu. Rev. Physiol. 35, 329-356.
  • Clements, J. R., Beitz, A. J., Fletcher, T. F., and M.A, M., 2004. Immunocytochemical localization of serotonin in the rat periaqueductal gray: A quantitative light and electron microscopic study The Journal of Comparative Neurology 236, 60 - 70.
  • Clements, J. R., Madl, J. E., Johnson, R. L., Larson, A. A., and Beitz, A. J., 1987. Localization of glutamate, glutaminase, aspartate and aspartate aminotransferase in the rat midbrain periaqueductal gray. Exp Brain Res 67, 594-602.
  • Coffield, J. A., Bowen, K. K., and Miletic, V., 2004. Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat. The Journal of Comparative Neurology 321, 488 - 499.
  • Commons, K. G., Aicher, S. A., Kow, L. M., and Pfaff, D. W., 2000. Presynaptic and postsynaptic relations of mu-opioid receptors to gamma-aminobutyric acid-immunoreactive and medullary-projecting periaqueductal gray neurons. J Comp Neurol 419, 532-542.
  • Comoli, E., Coizet, V., Boyes, J., Bolam, J. P., Canteras, N. S., Quirk, R. H., Overton, P. G., and Redgrave, P., 2003. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci 6, 974-980.
  • Cornwall, J., Cooper, J. D., and Phillipson, O. T., 1990. Projections to the rostral reticular thalamic nucleus in the rat. Exp Brain Res 80, 157-171.
  • Cottingham, S. L., Femano, P. A., and Pfaff, D. W., 1987. Electrical stimulation of the midbrain central gray facilitates reticulospinal activation of axial muscle EMG. Exp Neurol 97, 704-724.
  • Cottingham, S. L., and Pfaff, D. W., 1987. Electrical stimulation of the midbrain central gray facilitates lateral vestibulospinal activation of back muscle EMG in the rat. Brain Res 421, 397-400.
  • Deakin, J. F., 1991. Depression and 5HT. Int Clin Psychopharmacol 6 Suppl 3, 23-28; discussion 29-31.
  • Deakin, J. F. G., F.G., 1991. 5-HT and mechanisms of defense. J Psychopharmacol 5, 305-315.
  • Descarries, L., Berthelet, F., Garcia, S., and Beaudet, A., 1986. Dopaminergic projection from nucleus raphe dorsalis to neostriatum in the rat. J Comp Neurol 249, 511-520, 484-515.
  • Dielenberg, R. A., Carrive, P., and McGregor, I. S., 2001. The cardiovascular and behavioral response to cat odor in rats: unconditioned and conditioned effects. Brain Res 897, 228-237.
  • Dielenberg, R. A., Hunt, G. E., and McGregor, I. S., 2001. “When a rat smells a cat”: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 104, 1085-1097.
  • Dielenberg, R. A., and McGregor, I. S., 2001. Defensive behavior in rats towards predatory odors: a review. Neurosci Biobehav Rev 25, 597-609.
  • Elmquist, J. K., and Saper, C. B., 1996. Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide. J Comp Neurol 374, 315-331.
  • Fanselow, M. S., 1991. The midbrain periaqueductal gray as coordinator of action in response to fear and anxiety. In: DePaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical and immunohistochemical organization. Plenum Press, New York, pp 151-173.
  • Fanselow, M. S., Kim, J. J., Young, S. L., Calcagnetti, D. J., DeCola, J. P., Helmstetter, F. J., and Landeira-Fernandez, J., 1991. Differential effects of selective opioid peptide antagonists on the acquisition of pavlovian fear conditioning. Peptides 12, 1033- 1037.
  • Fendt, M., Koch, M., and Schnitzler, H. U., 1994. Amygdaloid noradrenaline is involved in the sensitization of the acoustic startle response in rats. Pharmacol Biochem Behav 48, 307-314.
  • Fields, H. L., Heinricher, M. M., and Mason, P., 1991. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14, 219-245.
  • Flores, J. A., El Banoua, F., Galan-Rodriguez, B., and Fernandez-Espejo, E., 2004. Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors. Pain 110, 205-214.
  • Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., and Bandler, R., 2000. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 422, 556-578.
  • Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., and Bandler, R., 2001. Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 432, 307-328.
  • Fonberg, E., 1972. Control of emotional behavior through the hypothalamus and amygdaloid complex. In Physiology, Emotion, and Psychosomatic Illness. Ciba Foundation Symposium8, Elsevier, Amsterdam, 13 l-l 50.
  • Fuxe, K., 1965. Evidence for the Existence of Monoamine Neurons in the Central Nervous System. Iv. Distribution of Monoamine Nerve Terminals in the Central Nervous System. Acta Physiol Scand Suppl, SUPPL 247:237+.
  • Gabbott, P. L., 2003. Radial organisation of neurons and dendrites in human cortical areas 25, 32, and 32’. Brain Res 992, 298-304.
  • Gabbott, P. L., Warner, T. A., Jays, P. R., and Bacon, S. J., 2003. Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993, 59-71.
  • Gebhart, G. F., Sandkuhler, J., Thalhammer, J. G., and Zimmermann, M., 1983. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. J Neurophysiol 50, 1433-1445.
  • Gent, J. P., and Wolstencroft, J. H., 1976. Effects of methionine-enkephalin and leucine-enkephalin compared with those of morphine on brainstem neurones in cat. Nature 261, 426-427.
  • Goodwin, R. D., Faravelli, C., Rosi, S., Cosci, F., Truglia, E., de Graaf, R., and Wittchen, H. U., 2005. The epidemiology of panic disorder and agoraphobia in Europe. Eur Neuropsychopharmacol 15, 435-443.
  • Graeff, F. G., 2002. On serotonin and experimental anxiety. Psychopharmacology (Berl) 163, 467-476.
  • Gramsch, C., Hollt, V., Mehraein, P., Pasi, A., and Herz, A., 1979. Regional distribution of methionine-enkephalin- and beta-endorphin- like immunoreactivity in human brain and pituitary. Brain Res 171, 261-270.
  • Gray, J. A., 1982. The Neuropsychology of Anxiety: an enquiry into functions of the septo-hippocampal system, 1st ed. Oxford University Press.
  • Green, A. L., Wang, S., Bittar, R. G., Owen, S. L., Paterson, D. J., Stein, J. F., Bain, P. G., Shlugman, D., and Aziz, T. Z., 2007. Deep brain stimulation: a new treatment for hypertension? J Clin Neurosci 14, 592-595.
  • Green, A. L., Wang, S., Owen, S. L., Xie, K., Bittar, R. G., Stein, J. F., Paterson, D. J., and Aziz, T. Z., 2006. Stimulating the human midbrain to reveal the link between pain and blood pressure. Pain 124, 349-359.
  • Griez, E., and Schruers, K., 1998. Experimental pathophysiology of panic. J Psychosom Res 45, 493-503.
  • Griez, E. J. L., Faravelli, C., Nutt, D., and Zohar, J., 2001 Anxiety Disorders: An Introduction to Clinical Management and Research
  • Guimaraes, A. P., and Prado, W. A., 1999. Pharmacological evidence for a periaqueductal gray-nucleus raphe magnus connection mediating the antinociception induced by microinjecting carbachol into the dorsal periaqueductal gray of rats. Brain Res
  • Guimaraes, F. S., Carobrez, A. P., De Aguiar, J. C., and Graeff, F. G., 1991. Anxiolytic effect in the elevated plus-maze of the NMDA receptor antagonist AP7 microinjected into the dorsal periaqueductal grey. Psychopharmacology (Berl) 103, 91-94.
  • Hamilton, B. L., 1973. Cytoarchitectural subdivisions of the periaqueductal gray matter in the cat. J Comp Neurol 149, 1-27.
  • Hamilton, B. L., 1973. Projections of the nuclei of the periaqueductal gray matter in the cat. J Comp Neurol 152, 45-58.
  • Han, F., Zhang, Y. F., and Li, Y. Q., 2003. Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study. World J Gastroenterol 9, 1045-1050.
  • Harrison, S., and Geppetti, P., 2001. Substance p. Int J Biochem Cell Biol 33, 555-576.
  • Hasue, R. H., and Shammah-Lagnado, S. J., 2002. Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454, 15-33.
  • Hebert, H., and Saper, C. B., 1992 Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J. Comp. Neurol. 315, 34-52.
  • Henderson, L. A., Keay, K. A., and Bandler, R., 1998. The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions: a functional-anatomical and physiological study. Neuroscience 82, 201-221.
  • Herbert, H., and Saper, C. B., 1992. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol 315, 34-52.
  • Hermes, M. L., Buijs, R. M., Masson-Pevet, M., and Pevet, P., 1988. Oxytocinergic innervation of the brain of the garden dormouse (Eliomys quercinus L.). J Comp Neurol 273, 252-262.
  • Herrera, M., Sanchez del Campo, F., and Smith-Agreda, V., 1987. The commissural nucleus of the inferior colliculus in the rabbit. A morphological study. J Hirnforsch 28, 671-683.
  • Hilton, S. M., 1975. Ways of viewing the central nervous control of the circulation--old and new. Brain Res 87, 213-219.
  • Hilton, S. M., and Redfern, W. S., 1986. A search for brain stem cell groups integrating the defence reaction in the rat. J Physiol 378, 213-228.
  • Hilton, S. M., and Zbrozyna, A. W., 1963. Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J Physiol 165, 160-173.
  • Holstege, G., 1987. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260, 98-126.
  • Holstege, G., 1988. Anatomical evidence for a strong ventral parabrachial projection to nucleus raphe magnus and adjacent tegmental field. Brain Res 447, 154-158.
  • Huettner, J. E., 2003. Kainate receptors and synaptic transmission. Prog Neurobiol 70, 387-407.
  • Illing, R. B., and Graybiel, A. M., 1986. Complementary and non-matching afferent compartments in the cat’s superior colliculus: innervation of the acetylcholinesterase-poor domain of the intermediate gray layer. Neuroscience 18, 373-394.
  • Imai, H., Steindler, D. A., and Kitai, S. T., 1986. The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243, 363-380.
  • Iwata, J., LeDoux, J. E., Meeley, M. P., Arneric, S., and Reis, D. J., 1986. Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res 383, 195-214.
  • Jacquet, Y. F., and Squires, R. F., 1988. Excitatory amino acids: role in morphine excitation in rat periaqueductal gray. Behav Brain Res 31, 85-88.
  • Jasmin, L., Burkey, A. R., Granato, A., and Ohara, P. T., 2004. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468, 425-440.
  • Jenck, F., Broekkamp, C. L., and Van Delft, A. M., 1989. Effects of serotonin receptor antagonists on PAG stimulation induced aversion: different contributions of 5HT1, 5HT2 and 5HT3 receptors. Psychopharmacology (Berl) 97, 489-495.
  • Jensen, T. S., and Yaksh, T. L., 1989. Comparison of the antinociceptive effect of morphine and glutamate at coincidental sites in the periaqueductal gray and medial medulla in rats. Brain Res 476, 1-9.
  • Jordan, L. M., Brownstone, R. M., and Noga, B. R., 1992. Control of functional systems in the brainstem and spinal cord. Curr Opin Neurobiol 2, 794-801.
  • Jurgens, U., and Ploog, D., 1970. Cerebral representation of vocalization in the squirrel monkey. Exp Brain Res 10, 532-554.
  • Jurgens, U., and Pratt, R., 1979. Role of the periaqueductal grey in vocal expression of emotion. Brain Res 167, 367-378.
  • Kaada, B., 1967. Brain mechanisms related to aggressive behavior. UCLA Forum Med Sci 7, 95-133.
  • Kabat, H., Magoun, H. W., and Ranson, S. W., 1935. Electrical stimulation of points in the forebrain and midbrain. The resultant alteration in blood pressure, . Arch. Neurol. Psychiat. (Chicago) 34 931-955.
  • Kandel, E. R., Schwartz, J. H., and Jessel, T. M., 1995. Essentials of neural science and behaviour. Prentice Hall International, INC. , 234-237, 297.
  • Keay, K. A., and Bandler, R., 2001. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev 25, 669-678.
  • Keay, K. A., Crowfoot, L. J., Floyd, N. S., Henderson, L. A., Christie, M. J., and Bandler, R., 1997. Cardiovascular effects of microinjections of opioid agonists into the ‘Depressor Region’ of the ventrolateral periaqueductal gray region. Brain Res 762, 61-71.
  • Kehoe, P., and Boylan, C. B., 1994. Behavioral effects of kappa-opioid-receptor stimulation on neonatal rats. Behav Neurosci 108, 418-423.
  • Kirouac, G. J., Li, S., and Mabrouk, G., 2004. GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. J Comp Neurol 469, 170-184.
  • Kirouac, G. J., and Pittman, Q. J., 2000. A projection from the ventral tegmental area to the periaqueductal gray involved in cardiovascular regulation. Am J Physiol Regul Integr Comp Physiol 278, R1643-1650.
  • Kitchen, I., Kelly, M., and Viveros, M. P., 1990. Ontogenesis of kappa-opioid receptors in rat brain using [3H]U-69593 as a binding ligand. Eur J Pharmacol 175, 93-96. Klerman, G. L., Weissman, M. M., Ouellette, R., Johnson, J., and Greenwald, S., 1991. Panic attacks in the community. Social morbidity and health care utilization. Jama 265, 742-746.
  • Kozicz, T., Vigh, S., and Arimura, A., 1998. The source of origin of PACAP- and VIP-immunoreactive fibers in the laterodorsal division of the bed nucleus of the stria terminalis in the rat. Brain Res 810, 211-219.
  • Kramer, M. S., Cutler, N., Feighner, J., Shrivastava, R., Carman, J., Sramek, J. J., Reines, S. A., Liu, G., Snavely, D., Wyatt-Knowles, E., Hale, J. J., Mills, S. G., MacCoss, M., Swain, C. J., Harrison, T., Hill, R. G., Hefti, F., Scolnick, E. M., Cascieri, M. A., Chicchi, G. G., Sadowski, S., Williams, A. R., Hewson, L., Smith, D., Carlson, E. J., Hargreaves, R. J., and Rupniak, N. M., 1998. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640-1645.
  • Krettek, J. E., and Price, J. L., 1977. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171, 157-191.
  • Krettek, J. E., and Price, J. L., 1977. Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172, 687-722.
  • Krieger, J. E., and Graeff, F. G., 1985. Defensive behavior and hypertension induced by glutamate in the midbrain central gray of the rat. Braz J Med Biol Res 18, 61-67.
  • Krout, K. E., Belzer, R. E., and Loewy, A. D., 2002. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448, 53-101.
  • Krout, K. E., and Loewy, A. D., 2000. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 424, 111-141.
  • Laemle, L. K., 1979. Neuronal populations of the human periaqueductal gray, nucleus lateralis. J Comp Neurol 186, 93-107.
  • LeDoux, J. E., 1994 The amygdala: Contributions to fear and stress. Seminal Neuroscience 6, 231-237.
  • LeDoux, J. E., Iwata, J., Cicchetti, P., and Reis, D. J., 1988. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8, 2517-2529.
  • LeDoux, J. E., Sakaguchi, A., and Reis, D. J., 1984. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4, 683-698.
  • Levy, R. A., and Proudfit, H. K., 1979. Analgesia produced by microinjection of baclofen and morphine at brain stem sites. Eur J Pharmacol 57, 43-55.
  • Li, Y. Q., Jia, H. G., Rao, Z. R., and Shi, J. W., 1990. Serotonin-, substance P- or leucine-enkephalin-containing neurons in the midbrain periaqueductal gray and nucleus raphe dorsalis send projection fibers to the central amygdaloid nucleus in the rat. Neurosci Lett 120, 124-127.
  • Li, Y. Q., Takada, M., and Mizuno, N., 1993. Demonstration of habenular neurons which receive afferent fibers from the nucleus accumbens and send their axons to the midbrain periaqueductal gray. Neurosci Lett 158, 55-58.
  • Lim, L. W., Blokland, A., Visser-Vandewalle, V., Vlamings, R., Sesia, T., Steinbusch, H., Schruers, K., Griez, E., and Temel, Y., 2008. High- frequency stimulation of the dorsolateral periaqueductal gray and ventromedial hypothalamus fails to inhibit panic-like behaviour. Behav Brain Res 193, 197-203.
  • Lima, V. C., Molchanov, M. L., Aguiar, D. C., Campos, A. C., and Guimaraes, F. S., 2007. Modulation of defensive responses and anxiety-like behaviors by group I metabotropic glutamate receptors located in the dorsolateral periaqueductal gray. Prog Neuropsychopharmacol Biol Psychiatry.
  • Lindvall, O., Bjorklund, A., Moore, R. Y., and Stenevi, U., 1974. Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81, 325-331.
  • Liu, H., Chandler, S., Beitz, A. J., Shipley, M. T., and Behbehani, M. M., 1994. Characterization of the effect of cholecystokinin (CCK) on neurons in the periaqueductal gray of the rat: immunocytochemical and in vivo and in vitro electrophysiological studies. Brain Res 642, 83-94.
  • Liu, R. P., and Hamilton, B. L., 1980. Neurons of the periaqueductal gray matter as revealed by Golgi study. J Comp Neurol 189, 403
  • Lovick, T. A., 1991. Central nervous system integration of pain control and autonomic function. NIPS 6, 82-86.
  • Lovick, T. A., 1992. Midbrain influences on ventrolateral medullo-spinal neurones in the rat. Exp Brain Res 90, 147-152.
  • Lozano, A. M., and Eltahawy, H., 2004. How does DBS work? Suppl Clin Neurophysiol 57, 733-736.
  • Mamounas, L. A., Mullen, C. A., O’Hearn, E., and Molliver, M. E., 1991. Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol 314, 558-586.
  • Manchanda, S. K., Poddar, A., Saha, S., Bhatia, S. C., Kumar, V. M., and Nayar, U., 1995. Predatory aggression induced by hypothalamic stimulation: modulation by midbrain periaqueductal gray (PAG). Neurobiology (Bp) 3, 405-417.
  • Mantyh, P. W., 1983. Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections. J Neurophysiol 49, 567-581.
  • Mantyh, P. W., 1983. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections. J Neurophysiol
  • Martin-Ruiz, R., Puig, M. V., Celada, P., Shapiro, D. A., Roth, B. L., Mengod, G., and Artigas, F., 2001. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21, 9856- 9866.
  • Martin, G. F., Humbertson, A. O., Jr., Laxson, L. C., Panneton, W. M., and Tschismadia, I., 1979. Spinal projections from the mesencephalic and pontine reticular formation in the North American Opossum: a study using axonal transport techniques. J Comp Neurol 187, 373-399.
  • Matheus, M. G., and Guimaraes, F. S., 1997. Antagonism of non-NMDA receptors in the dorsal periaqueductal grey induces anxiolytic effect in the elevated plus maze. Psychopharmacology (Berl) 132, 14-18.
  • Maubach, K. A., Rupniak, N. M., Kramer, M. S., and Hill, R. G., 1999. Novel strategies for pharmacotherapy of depression. Curr Opin Chem Biol 3, 481-488.
  • McNaughton, N., and Corr, P. J., 2004. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev 28, 285-305.
  • McNaughton, N., and Gray, J. A., 2000. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. J Affect Disord 61, 161-176.
  • McTavish, D., and Heel, R. C., 1992. Dexfenfluramine. A review of its pharmacological properties and therapeutic potential in obesity. Drugs 43, 713-733.
  • Meloni, E. G., and Davis, M., 1999. Muscimol in the deep layers of the superior colliculus/mesencephalic reticular formation blocks expression but not acquisition of fear-potentiated startle in rats. Behav Neurosci 113, 1152-1160.
  • Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., and Caron, M. G., 1998. Dopamine receptors: from structure to function. Physiol Rev 78, 189-225.
  • Miyawaki, T., Goodchild, A. K., and Pilowsky, P. M., 2001. Rostral ventral medulla 5-HT1A receptors selectively inhibit the somatosympathetic reflex. Am J Physiol Regul Integr Comp Physiol 280, R1261-1268.
  • Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., Dolan, R. J., and Frith, C. D., 2007. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317, 1079-1083.
  • Molchanov, M. L., and Guimaraes, F. S., 1999. Defense reaction induced by a metabotropic glutamate receptor agonist microinjected into the dorsal periaqueductal gray of rats. Braz J Med Biol Res 32, 1533-1537.
  • Montgomery, E. B., Jr., and Gale, J. T., 2007. Mechanisms of action of deep brain stimulation (DBS). Neurosci Biobehav Rev.
  • Moore, K. E., Annunziato, L., and Gudelsky, G. A., 1978. Studies on tuberoinfundibular dopamine neurons. Adv Biochem Psychopharmacol 19, 193-204.
  • Moore, R. Y., 1978. Catecholamin innervation of the basal forebrain. I. The septal area. J Comp Neurol 177, 665-684.
  • Moore, R. Y., and Bloom, F. E., 1978. Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1, 129-169.
  • Moran, T. H., Robinson, P. H., Goldrich, M. S., and McHugh, P. R., 1986. Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res 362, 175-179.
  • Moreau, J. L., and Fields, H. L., 1986. Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res 397, 37-46.
  • Moreira, F. A., Molchanov, M. L., and Guimaraes, F. S., 2004. Ionotropic glutamate-receptor antagonists inhibit the aversive effects of nitric oxide donor injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology (Berl) 171, 199-203.
  • Morgan, M. M., Clayton, C. C., and Lane, D. A., 2003. Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance. Neuroscience 118, 227-232.
  • Mouton, L. J., Klop, E. M., and Holstege, G., 2005. C1-C3 spinal cord projections to periaqueductal gray and thalamus: a quantitative retrograde tracing study in cat. Brain Res 1043, 87-94.
  • N’Gouemo, P., and Faingold, C. L., 1999. The periaqueductal grey is a critical site in the neuronal network for audiogenic seizures: modulation by GABA(A), NMDA and opioid receptors. Epilepsy Res 35, 39-46.
  • Nashold, B. S., Jr., Wilson, W. P., and Slaughter, D. G., 1969. Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30, 14-24.
  • Neafsey, E. J., Bold, E. L., Haas, G., Hurley-Gius, K. M., Quirk, G., Sievert, C. F., and Terreberry, R. R., 1986. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396, 77-96. Nogueira, R. L., and Graeff, F. G., 1995. Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52, 1-6.
  • Olszewki, J., and Baxter, D., 1954. Cytoarchitecture of the Human Brainstem. . Philadelphia: J. B. Lippincott.
  • Ongur, D., An, X., and Price, J. L., 1998. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401, 480-505.
  • Pajolla, G. P., and de Aguiar Correa, F. M., 2004. Cardiovascular responses to the injection of L-glutamate in the lateral hypothalamus of unanesthetized or anesthetized rats. Auton Neurosci 116, 19-29.
  • Pajolla, G. P., Tavares, R. F., Pelosi, G. G., and Correa, F. M., 2005. Involvement of the periaqueductal gray in the hypotensive response evoked by L-glutamate microinjection in the lateral hypothalamus of unanesthetized rats. Auton Neurosci 122, 84-93.
  • Pelosi, G. G., and Correa, F. M., 2005. Cardiovascular effects of noradrenaline microinjected into the dorsal periaqueductal gray area of unanaesthetized rats. Eur J Neurosci 22, 3188-3194.
  • Peterson, S. L., Armstrong, J. J., and Walker, M. K., 2000. Focal microinjection of carbachol into the periaqueductal gray induces seizures in the forebrain of the rat. Epilepsy Res 42, 169-181.
  • Petit, J. M., Luppi, P. H., Peyron, C., Rampon, C., and Jouvet, M., 1995. VIP-like immunoreactive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neurosci Lett 193, 77-80.
  • Petrov, T., Jhamandas, J. H., and Krukoff, T. L., 1992. Characterization of peptidergic efferents from the lateral parabrachial nucleus to identified neurons in the rat dorsal raphe nucleus. J Chem Neuroanat 5, 367-373.
  • Peyron, C., Luppi, P. H., Fort, P., Rampon, C., and Jouvet, M., 1996. Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. J Comp Neurol 364, 402-413.
  • Pfeiffer, A., Feuerstein, G., Faden, A., and Kopin, I. J., 1982. Evidence for an involvement of mu-, but not delta- or kappa-opiate receptors in sympathetically and parasympathetically mediated cardiovascular responses to opiates upon anterior hypothalamic injection. Life Sci 31, 1279-1282.
  • Pfeiffer, A., and Herz, A., 1982. Different types of opiate agonists interact distinguishably with mu, delta and kappa opiate binding sites. Life Sci 31, 1355-1358.
  • Pfeiffer, A., Pasi, A., Mehraein, P., and Herz, A., 1982. Opiate receptor binding sites in human brain. Brain Res 248, 87-96.
  • Pittius, C. W., Seizinger, B. R., Pasi, A., Mehraein, P., and Herz, A., 1984. Distribution and characterization of opioid peptides derived from proenkephalin A in human and rat central nervous system. Brain Res 304, 127-136.
  • Pobbe, R. L., and Zangrossi, H., Jr., 2005. 5-HT(1A) and 5-HT(2A) receptors in the rat dorsal periaqueductal gray mediate the antipanic- like effect induced by the stimulation of serotonergic neurons in the dorsal raphe nucleus. Psychopharmacology (Berl) 183, 314-321.
  • Pohle, W., Ott, T., and Muller-Welde, P., 1984. Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J Hirnforsch 25, 1-10.
  • Price, J. L., and Amaral, D. G., 1981. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1, 1242-1259.
  • Raisinghani, M., and Faingold, C. L., 2003. Identification of the requisite brain sites in the neuronal network subserving generalized clonic audiogenic seizures. Brain Res 967, 113-122.
  • Ray, J. P., and Price, J. L., 1992. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323, 167-197.
  • Reep, R. L., and Winans, S. S., 1982. Efferent connections of dorsal and ventral agranular insular cortex in the hamster, Mesocricetus auratus. Neuroscience 7, 2609-2635.
  • Reichling, D. B., and Basbaum, A. I., 1990. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J Comp Neurol 302, 370-377.
  • Renno, W. M., Mahmoud, M. S., Hamdi, A., and Beitz, A. J., 1999. Quantitative immunoelectron microscopic colocalization of GABA and enkephalin in the ventrocaudal periaqueductal gray of the rat. Synapse 31, 216-228.
  • Renoldi, G., and Invernizzi, R. W., 2006. Blockade of tachykinin NK1 receptors attenuates stress-induced rise of extracellular noradrenaline and dopamine in the rat and gerbil medial prefrontal cortex. J Neurosci Res 84, 961-968.
  • Richardson, D. E., and Akil, H., 1977. Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. J Neurosurg 47, 178-183.
  • Richardson, D. E., and Akil, H., 1977. Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. J Neurosurg 47, 184-194.
  • Richter, R. C., and Behbehani, M. M., 1991. Evidence for glutamic acid as a possible neurotransmitter between the mesencephalic nucleus cuneiformis and the medullary nucleus raphe magnus in the lightly anesthetized rat. Brain Res 544, 279-286.
  • Rizvi, T. A., Ennis, M., Behbehani, M. M., and Shipley, M. T., 1991. Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303, 121-131.
  • Rossi, G. C., Pasternak, G. W., and Bodnar, R. J., 1994. Mu and delta opioid synergy between the periaqueductal gray and the rostro- ventral medulla. Brain Res 665, 85-93.
  • Saha, S. N., Bhatia, S. C., and Nayar, U., 2004. Adrenergic involvement in the locus ceruleus and adjoining regions in the facilitation of predatory attack behavior as induced by hypothalamic stimulation in cats. Indian J Physiol Pharmacol 48, 51-58.
  • Sandkuhler, J., and Gebhart, G. F., 1984. Characterization of inhibition of a spinal nociceptive reflex by stimulation medially and laterally in the midbrain and medulla in the pentobarbital-anesthetized rat. Brain Res 305, 67-76.
  • Saper, C. B., 1979. Anatomical substrates for the hypothalamic control of the autonomic nervous system. In Integrative Functions of the Autonomic Nervous System, C. McBrooks, K. Loizumi, and A. Sato, eds. U. Tokyo Press, Tokyo. . 333-341.
  • Schmitt, P., Di Scala, G., Brandao, M. L., and Karli, P., 1985. Behavioral effects of microinjections of SR 95103, a new GABA-A antagonist, into the medial hypothalamus or the mesencephalic central gray. Eur J Pharmacol 117, 149-158.
  • Schutz, M. T., de Aguiar, J. C., and Graeff, F. G., 1985. Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology (Berl) 85, 340-345.
  • Schwaber, J. S., Kapp, B. S., Higgins, G. A., and Rapp, P. R., 1982. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. . J. Neurosci. 2: 1424-1438, 1424-1438.
  • Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1988. Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J Comp Neurol 267, 433-453.
  • Semenenko, F. M., and Lumb, B. M., 1992. Projections of anterior hypothalamic neurones to the dorsal and ventral periaqueductal grey in the rat. Brain Res 582, 237-245.
  • Seroogy, K. B., Dangaran, K., Lim, S., Haycock, J. W., and Fallon, J. H., 1989. Ventral mesencephalic neurons containing both cholecystokinin- and tyrosine hydroxylase-like immunoreactivities project to forebrain regions. J Comp Neurol 279, 397- 414.
  • Seroogy, K. B., and Fallon, J. H., 1989. Forebrain projections from cholecystokininlike-immunoreactive neurons in the rat midbrain. J Comp Neurol 279, 415-435.
  • Shaikh, M. B., De Lanerolle, N. C., and Siegel, A., 1997. Serotonin 5-HT1A and 5-HT2/1C receptors in the midbrain periaqueductal gray differentially modulate defensive rage behavior elicited from the medial hypothalamus of the cat. Brain Res 765, 198-207.
  • Shammah-Lagnado, S. J., Alheid, G. F., and Heimer, L., 2001. Striatal and central extended amygdala parts of the interstitial nucleus of the posterior limb of the anterior commissure: evidence from tract-tracing techniques in the rat. J Comp Neurol 439, 104-126.
  • Shipley, M. T., Ennis, M., Rizvi, T. A., and Behbehani, M. M., 1991. Topographical specificity of forebrain inputs to the midbrain periaqueductal gray: Evidence for discrete longitudinally organized input columns. In A. Depaulis and R. Bandler (eds): The Midbrain Periaqueductal Gray Matter. New York: Plenum,, 417-448.
  • Siegel, A., and Edinger, H., ; pp. , , 1981. Neural control of aggression and rage behavior. In Handbook of the Hypothalamus, vol. 3: Behavioral Studies of the Hypothalamus, P.J. Morgane and J. Panksevv, eds. Dekker, New York. 203-240.
  • Siegel, A., Schubert, K. L., and Shaikh, M. B., 1997. Neurotransmitters regulating defensive rage behavior in the cat. Neurosci Biobehav Rev 21, 733-742.
  • Singewald, N., and Sharp, T., 2000. Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by Fos immunocytochemistry. Neuroscience 98, 759-770.
  • Snowball, R. K., Semenenko, F. M., and Lumb, B. M., 2000. Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study. Neuroscience 99, 351- 361.
  • Steinbusch, H. W., 1981. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6, 557-618.
  • Stratford, T. R., and Wirtshafter, D., 1990. Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res 511, 173-176.
  • Sun, M. K., and Guyenet, P. G., 1986. Hypothalamic glutamatergic input to medullary sympathoexcitatory neurons in rats. Am J Physiol 251, R798-810.
  • Swanson, L. W., Mogenson, G. J., Gerfen, C. R., and Robinson, P., 1984. Evidence for a projection from the lateral preoptic area and substantia innominata to the ‚mesencephalic locomotor region‘ in the rat. Brain Res 295, 161-178.
  • Swanson, L. W., and Sawchenko, P. E., 1983. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6, 269-324.
  • Tanaka, M., Okamura, H., Tamada, Y., Nagatsu, I., Tanaka, Y., and Ibata, Y., 1994. Catecholaminergic input to spinally projecting serotonin neurons in the rostral ventromedial medulla oblongata of the rat. Brain Res Bull 35, 23-30.
  • Thornton, J. M., Aziz, T., Schlugman, D., and Paterson, D. J., 2002. Electrical stimulation of the midbrain increases heart rate and arterial blood pressure in awake humans. J Physiol 539, 615-621.
  • Tredici, G., Bianchi, R., and Gioia, M., 1983. Short intrinsic circuit in the periaqueductal gray matter of the cat. Neurosci Lett 39, 131- 136.
  • Van der Kooy, D., and Hattori, T., 1980. Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res 186, 1-7.
  • Van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R., and Bloom, F. E., 1984. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224, 1-24.
  • Velayos, J. L., and Reinoso-Suarez, F., 1982. Topographic organization of the brainstem afferents to the mediodorsal thalamic nucleus. J Comp Neurol 206, 17-27.
  • Versteeg, D. H., Palkovits, M., Van der Gugten, J., Wijnen, H. L., Smeets, G. W., and de Jong, W., 1976. Catecholamine content of individual brain regions of spontaneously hypertensive rats (SH-rats). Brain Res 112, 429-434.
  • Versteeg, D. H., Van Der Gugten, J., De Jong, W., and Palkovits, M., 1976. Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res 113, 563-574.
  • Vertes, R. P., 1991. A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313, 643-668.
  • Viana, M. B., Graeff, F. G., and Loschmann, P. A., 1997. Kainate microinjection into the dorsal raphe nucleus induces 5-HT release in the amygdala and periaqueductal gray. Pharmacol Biochem Behav 58, 167-172.
  • Vianna, D. M., Borelli, K. G., Ferreira-Netto, C., Macedo, C. E., and Brandao, M. L., 2003. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds. Brain Res Bull 62, 179-189.
  • Vianna, D. M., and Brandao, M. L., 2003. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 36, 557-566.
  • Vianna, D. M., Graeff, F. G., Brandao, M. L., and Landeira-Fernandez, J., 2001. Defensive freezing evoked by electrical stimulation of the periaqueductal gray: comparison between dorsolateral and ventrolateral regions. Neuroreport 12, 4109-4112.
  • Vianna, D. M., Graeff, F. G., Landeira-Fernandez, J., and Brandao, M. L., 2001. Lesion of the ventral periaqueductal gray reduces conditioned fear but does not change freezing induced by stimulation of the dorsal periaqueductal gray. Learn Mem 8, 164-169.
  • Vianna, D. M., Landeira-Fernandez, J., and Brandao, M. L., 2001. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci Biobehav Rev 25, 711-719.
  • Walsh, S. L., Geter-Douglas, B., Strain, E. C., and Bigelow, G. E., 2001. Enadoline and butorphanol: evaluation of kappa-agonists on cocaine pharmacodynamics and cocaine self-administration in humans. J Pharmacol Exp Ther 299, 147-158.
  • Wang, M. R., Kuo, J. S., and Chai, C. Y., 2001. Nitric oxide produces different actions in different areas of the periaqueductal grey in cats. Neurosci Lett 309, 57-61.
  • Weiner, S., Shaikh, M. B., Shaikh, A. B., and Siegel, A., 1991. Enkephalinergic involvement in periaqueductal gray control of hypothalamically elicited predatory attack in the cat. Physiol Behav 49, 1099-1105.
  • Williams, F. G., Mullet, M. A., and Beitz, A. J., 1995. Basal release of Met-enkephalin and neurotensin in the ventrolateral periaqueductal gray matter of the rat: a microdialysis study of antinociceptive circuits. Brain Res 690, 207-216.
  • Wittchen, H. U., 1988. Natural course and spontaneous remissions of untreated anxiety disorders-results of the Munich follow-up study (MFS). In: I. Hand and H.U. Wittchen, Editors, Panic and Phobias: 2. Treatments and Variables Affecting Course and Outcome, Springer, Berlin 3-17.
  • Yang, Z., and Coote, J. H., 1998. Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat. J Physiol 513 ( Pt 2), 521-530.
  • Yardley, C. P., and Hilton, S. M., 1986. The hypothalamic and brainstem areas from which the cardiovascular and behavioural components of the defence raction are elicited in the rat. J Auton Nerv Syst 15, 227-244.
  • Yasui, Y., Itoh, K., Kaneko, T., Shigemoto, R., and Mizuno, N., 1991. Topographical projections from the cerebral cortex to the nucleus of the solitary tract in the cat. Exp Brain Res 85, 75-84.
  • Yoshida, M., Shirouzu, M., Tanaka, M., Semba, K., and Fibiger, H. C., 1989. Dopaminergic neurons in the nucleus raphe dorsalis innervate the prefrontal cortex in the rat: a combined retrograde tracing and immunohistochemical study using anti- dopamine serum. Brain Res 496, 373-376.
  • Young, R. F., Kroening, R., Fulton, W., Feldman, R. A., and Chambi, I., 1985. Electrical stimulation of the brain in treatment of chronic pain. Experience over 5 years. J Neurosurg 62, 389-396.
  • Zanoveli, J. M., Netto, C. F., Guimaraes, F. S., and Zangrossi, H., Jr., 2004. Systemic and intra-dorsal periaqueductal gray injections of cholecystokinin sulfated octapeptide (CCK-8s) induce a panic-like response in rats submitted to the elevated T-maze. Peptides 25, 1935-1941.
  • Zarbin, M. A., Innis, R. B., Wamsley, J. K., Snyder, S. H., and Kuhar, M. J., 1983. Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neurosci 3, 877-906.
  • Zhang, Y. H., Yanase-Fujiwara, M., Hosono, T., and Kanosue, K., 1995. Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats? J Physiol 485 ( Pt 1), 195-202.
  • Zhao, Z., and Davis, M., 2004. Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/ deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 24, 10326- 10334.
  • Zieglgansberger, W., and Puil, E. A., 1973. Actions of glutamic acid on spinal neurones. Exp Brain Res 17, 35-49.
Yıl 2009, Cilt: 26 Sayı: 1, 1 - 26, 06.12.2010

Öz

Kaynakça

  • Abbar, M., 1996. [Panic disorder and panic attack]. Encephale 22 Spec No 5, 13-18.
  • Abrams, J. K., Johnson, P. L., Hollis, J. H., and Lowry, C. A., 2004. Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018, 46-57.
  • Adell, A., Carceller, A., and Artigas, F., 1991. Regional distribution of extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the brain of freely moving rats. J Neurochem 56, 709-712.
  • Altier, N., and Stewart, J., 1998. Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine. J Pharmacol Exp Ther 285, 208-215.
  • Amano, K., Tanikawa, T., Iseki, H., Kawabatake, H., Notani, M., Kawamura, H., and Kitamura, K., 1978. Single neuron analysis of the human midbrain tegmentum. Rostral mecencephalic reticulotomy for pain relief. Appl Neurophysiol 41, 66-78.
  • American-Psychiatric-Association, 1998 May. Practice guideline for the treatment of patients with panic disorder. Work Group on Panic Disorder. Am J Psychiatry 155(5 Suppl), 1-34.
  • American-Psychiatric-Association, 2000. Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition, Text Revision. Washington, DC: American Psychiatric Press.
  • An, X., Bandler, R., Ongur, D., and Price, J. L., 1998. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 401, 455-479.
  • Arnault, P., and Roger, M., 1987. The connections of the peripeduncular area studied by retrograde and anterograde transport in the rat. J Comp Neurol 258, 463-476.
  • Azmitia, E. C., and Segal, M., 1978. An autoradiographic analysis of the differential ascending projec tions of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179, 641-667.
  • Bago, M., Marson, L., and Dean, C., 2002. Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res 945, 249-258.
  • Bajic, D., Proudfit, H. K., and Van Bockstaele, E. J., 2000. Periaqueductal gray neurons monosynaptically innervate extranuclear noradrenergic dendrites in the rat pericoerulear region. J Comp Neurol 427, 649-662.
  • Bandler, R., 1982. Induction of ‘rage’ following microinjections of glutamate into midbrain but not hypothalamus of cats. Neurosci Lett 30, 183-188.
  • Bandler, R., and Depaulis, A., 1988. Elicitation of intraspecific defence reactions in the rat from midbrain periaqueductal grey by microinjection of kainic acid, without neurotoxic effects. Neurosci Lett 88, 291-296.
  • Bandler, R., and Keay, K. A., 1996. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 107, 285-300.
  • Bandler, R., and McCulloch, T., 1984. Afferents to a midbrain periaqueductal grey region involved in the ‘defense reaction’ in the cat as revealed by horseradish peroxidase. II. The diencephalon. Behav Brain Res 13, 279-285.
  • Bandler, R., McCulloch, T., and Dreher, B., 1985. Afferents to a midbrain periaqueductal grey region involved in the ‘defence reaction’ in the cat as revealed by horseradish peroxidase. I. The telencephalon. Brain Res 330, 109-119.
  • Bandler, R., and Shipley, M. T., 1994. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17, 379-389.
  • Bandler, R., and Tork, I., 1987. Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract nuclei. Neurosci Lett 74, 1-6.
  • Basbaum, A. I., and Fields, H. L., 1984. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7, 309-338.
  • Bear, M. F., Connors, B. W., and Paradiso, M. A., 2001. Neuroscience, exploring the brain 2nd edition. . Lippincott Williams & Wilkins 107, 131-153.
  • Beckett, S., and Marsden, C. A., 1997. The effect of central and systemic injection of the 5-HT1A receptor agonist 8-OHDPAT and the 5-HT1A receptor antagonist WAY100635 on periaqueductal grey-induced defence behaviour. J Psychopharmacol 11, 35-40.
  • Behbehani, M. M., 1995. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46, 575-605.
  • Behbehani, M. M., Jiang, M. R., Chandler, S. D., and Ennis, M., 1990. The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat. Pain 40, 195-204.
  • Behbehani, M. M., Park, M. R., and Clement, M. E., 1988. Interactions between the lateral hypothalamus and the periaqueductal gray. J Neurosci 8, 2780-2787.
  • Behbehani, M. M., and Zemlan, F. P., 1986. Response of nucleus raphe magnus neurons to electrical stimulation of nucleus cuneiformis: role of acetylcholine. Brain Res 369, 110-118.
  • Beitz, A. J., 1989. Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Res Bull 23, 25-35.
  • Bellgowan, P. S., and Helmstetter, F. J., 1998. The role of mu and kappa opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia. Brain Res 791, 83-89.
  • Bernard, J. F., and Bandler, R., 1998. Parallel circuits for emotional coping behaviour: new pieces in the puzzle. J Comp Neurol 401, 429-436.
  • Bertoglio, L. J., de Bortoli, V. C., and Zangrossi, H., Jr., 2007. Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Res 1156, 133-138.
  • Bertoglio, L. J., Guimaraes, F. S., and Zangrossi, H., Jr., 2006. Lack of interaction between NMDA and cholecystokinin-2 receptor- mediated neurotransmission in the dorsolateral periaqueductal gray in the regulation of rat defensive behaviors. Life Sci 79, 2238-2244.
  • Bertoglio, L. J., and Zangrossi, H., Jr., 2005. Involvement of dorsolateral periaqueductal gray cholecystokinin-2 receptors in the regulation of a panic-related behavior in rats. Brain Res 1059, 46-51.
  • Bhatia, S. C., Saha, S. N., Manchanda, S. K., and Nayar, U., 1997. Enkephalinergic mechanisms in midbrain (dPAG) in modulation of hypothalamically-induced predatory attack behaviour. Indian J Exp Biol 35, 438-442.
  • Bianchi, R., Corsetti, G., Rodella, L., Tredici, G., and Gioia, M., 1998. Supraspinal connections and termination patterns of the parabrachial complex determined by the biocytin anterograde tract-tracing technique in the rat. J Anat 193 ( Pt 3), 417
  • Blanchard, D. C., Griebel, G., and Blanchard, R. J., 2001. Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25, 205-218.
  • Blanchard, D. C., Griebel, G., and Blanchard, R. J., 2003. The Mouse Defense Test Battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 463, 97-116.
  • Blanchard, D. C., Rodgers, R. J., Hendrie, C. A., and Hori, K., 1988. ‘Taming’ of wild rats (Rattus rattus) by 5HT1A agonists buspirone and gepirone. Pharmacol Biochem Behav 31, 269-278.
  • Blanchard, R. J., and Blanchard, D. C., 1989. Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103, 70- 82.
  • Blanchard, R. J., and Blanchard, D. C., 1989. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog Neuropsychopharmacol Biol Psychiatry 13 Suppl, S3-14.
  • Borelli, K. G., Ferreira-Netto, C., Coimbra, N. C., and Brandao, M. L., 2005. Fos-like immunoreactivity in the brain associated with freezing or escape induced by inhibition of either glutamic acid decarboxylase or GABAA receptors in the dorsal periaqueductal gray. Brain Res 1051, 100-111.
  • Bourin, M., Bradwejn, J., and Koszycki, D., 1991. [Is cholecystokinin a biological support in panic attacks?]. Encephale 17, 475-479.
  • Bowery, N. G., Hudson, A. L., and Price, G. W., 1987. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20, 365-383.
  • Bradwejn, J., and Koszycki, D., 2001. Cholecystokinin and panic disorder: past and future clinical research strategies. Scand J Clin Lab Invest Suppl 234, 19-27.
  • Brandao, M. L., Anseloni, V. Z., Pandossio, J. E., De Araujo, J. E., and Castilho, V. M., 1999. Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci Biobehav Rev 23, 863-875.
  • Brandao, M. L., de Aguiar, J. C., and Graeff, F. G., 1982. GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacol Biochem Behav 16, 397-402.
  • Brandao, M. L., Di Scala, G., Bouchet, M. J., and Schmitt, P., 1986. Escape behavior produced by the blockade of glutamic acid decarboxylase (GAD) in mesencephalic central gray or medial hypothalamus. Pharmacol Biochem Behav 24, 497-501.
  • Brandao, M. L., Vianna, D. M., Masson, S., and Santos, J., 2003. [Neural organization of different types of fear: implications for the understanding of anxiety]. Rev Bras Psiquiatr 25 Suppl 2, 36-41.
  • Brodal, P., 2004. The central nervous system, structure and function 3rd edition. Oxford University Press 48-56.
  • Brown, T. G., 1915. Note on the physiology of the basal ganglia and mid-brain of the anthropoid ape, especially in reference to the act of laughter. J Physiol 49, 195-207.
  • Brutus, M., and Siegel, A., 1989. Effects of the opiate antagonist naloxone upon hypothalamically elicited affective defense behavior in the cat. Behav Brain Res 33, 23-32.
  • Budai, D., and Fields, H. L., 1998. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. J Neurophysiol 79, 677-687.
  • Cameron, A. A., Khan, I. A., Westlund, K. N., Cliffer, K. D., and Willis, W. D., 1995. The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. I. Ascending projections. J Comp Neurol 351, 568-584.
  • Cameron, A. A., Khan, I. A., Westlund, K. N., and Willis, W. D., 1995. The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections. J Comp Neurol 351, 585-601.
  • Canteras, N. S., 2002. The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol Biochem Behav 71, 481-491.
  • Canteras, N. S., Chiavegatto, S., Valle, L. E., and Swanson, L. W., 1997. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res Bull 44, 297-305.
  • Canteras, N. S., Ribeiro-Barbosa, E. R., and Comoli, E., 2001. Tracing from the dorsal premammillary nucleus prosencephalic systems involved in the organization of innate fear responses. Neurosci Biobehav Rev 25, 661-668.
  • Carden, S. E., Davachi, L., and Hofer, M. A., 1994. U50,488 increases ultrasonic vocalizations in 3-, 10-, and 18-day-old rat pups in isolation and the home cage. Dev Psychobiol 27, 65-83.
  • Carobrez, A. P., 2003. [Glutamatergic neurotransmission as molecular target in anxiety]. Rev Bras Psiquiatr 25 Suppl 2, 52-58.
  • Carrive, P., and Bandler, R., 1991. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study. Brain Res 541, 206-215.
  • Cassell, M. D., Gray, T. S., and Kiss, J. Z., 1986. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J Comp Neurol 246, 478-499.
  • Chaouloff, F., 2000. Serotonin, stress and corticoids. J Psychopharmacol 14, 139-151.
  • Chen, S., and Aston-Jones, G., 1995. Anatomical evidence for inputs to ventrolateral medullary catecholaminergic neurons from the midbrain periaqueductal gray of the rat. Neurosci Lett 195, 140-144.
  • Chieng, B., Keay, K. A., and Christie, M. J., 1995. Increased fos-like immunoreactivity in the periaqueductal gray of anaesthetised rats during opiate withdrawal. Neurosci Lett 183, 79-82.
  • Clement, C. I., Keay, K. A., Owler, B. K., and Bandler, R., 1996. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat. J Comp Neurol 366, 495-515.
  • Clemente, C. D., and Chase, M. H., 1973. Neurological substrates of aggressive behavior. Annu. Rev. Physiol. 35, 329-356.
  • Clements, J. R., Beitz, A. J., Fletcher, T. F., and M.A, M., 2004. Immunocytochemical localization of serotonin in the rat periaqueductal gray: A quantitative light and electron microscopic study The Journal of Comparative Neurology 236, 60 - 70.
  • Clements, J. R., Madl, J. E., Johnson, R. L., Larson, A. A., and Beitz, A. J., 1987. Localization of glutamate, glutaminase, aspartate and aspartate aminotransferase in the rat midbrain periaqueductal gray. Exp Brain Res 67, 594-602.
  • Coffield, J. A., Bowen, K. K., and Miletic, V., 2004. Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat. The Journal of Comparative Neurology 321, 488 - 499.
  • Commons, K. G., Aicher, S. A., Kow, L. M., and Pfaff, D. W., 2000. Presynaptic and postsynaptic relations of mu-opioid receptors to gamma-aminobutyric acid-immunoreactive and medullary-projecting periaqueductal gray neurons. J Comp Neurol 419, 532-542.
  • Comoli, E., Coizet, V., Boyes, J., Bolam, J. P., Canteras, N. S., Quirk, R. H., Overton, P. G., and Redgrave, P., 2003. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci 6, 974-980.
  • Cornwall, J., Cooper, J. D., and Phillipson, O. T., 1990. Projections to the rostral reticular thalamic nucleus in the rat. Exp Brain Res 80, 157-171.
  • Cottingham, S. L., Femano, P. A., and Pfaff, D. W., 1987. Electrical stimulation of the midbrain central gray facilitates reticulospinal activation of axial muscle EMG. Exp Neurol 97, 704-724.
  • Cottingham, S. L., and Pfaff, D. W., 1987. Electrical stimulation of the midbrain central gray facilitates lateral vestibulospinal activation of back muscle EMG in the rat. Brain Res 421, 397-400.
  • Deakin, J. F., 1991. Depression and 5HT. Int Clin Psychopharmacol 6 Suppl 3, 23-28; discussion 29-31.
  • Deakin, J. F. G., F.G., 1991. 5-HT and mechanisms of defense. J Psychopharmacol 5, 305-315.
  • Descarries, L., Berthelet, F., Garcia, S., and Beaudet, A., 1986. Dopaminergic projection from nucleus raphe dorsalis to neostriatum in the rat. J Comp Neurol 249, 511-520, 484-515.
  • Dielenberg, R. A., Carrive, P., and McGregor, I. S., 2001. The cardiovascular and behavioral response to cat odor in rats: unconditioned and conditioned effects. Brain Res 897, 228-237.
  • Dielenberg, R. A., Hunt, G. E., and McGregor, I. S., 2001. “When a rat smells a cat”: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 104, 1085-1097.
  • Dielenberg, R. A., and McGregor, I. S., 2001. Defensive behavior in rats towards predatory odors: a review. Neurosci Biobehav Rev 25, 597-609.
  • Elmquist, J. K., and Saper, C. B., 1996. Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide. J Comp Neurol 374, 315-331.
  • Fanselow, M. S., 1991. The midbrain periaqueductal gray as coordinator of action in response to fear and anxiety. In: DePaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical and immunohistochemical organization. Plenum Press, New York, pp 151-173.
  • Fanselow, M. S., Kim, J. J., Young, S. L., Calcagnetti, D. J., DeCola, J. P., Helmstetter, F. J., and Landeira-Fernandez, J., 1991. Differential effects of selective opioid peptide antagonists on the acquisition of pavlovian fear conditioning. Peptides 12, 1033- 1037.
  • Fendt, M., Koch, M., and Schnitzler, H. U., 1994. Amygdaloid noradrenaline is involved in the sensitization of the acoustic startle response in rats. Pharmacol Biochem Behav 48, 307-314.
  • Fields, H. L., Heinricher, M. M., and Mason, P., 1991. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14, 219-245.
  • Flores, J. A., El Banoua, F., Galan-Rodriguez, B., and Fernandez-Espejo, E., 2004. Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors. Pain 110, 205-214.
  • Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., and Bandler, R., 2000. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 422, 556-578.
  • Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., and Bandler, R., 2001. Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 432, 307-328.
  • Fonberg, E., 1972. Control of emotional behavior through the hypothalamus and amygdaloid complex. In Physiology, Emotion, and Psychosomatic Illness. Ciba Foundation Symposium8, Elsevier, Amsterdam, 13 l-l 50.
  • Fuxe, K., 1965. Evidence for the Existence of Monoamine Neurons in the Central Nervous System. Iv. Distribution of Monoamine Nerve Terminals in the Central Nervous System. Acta Physiol Scand Suppl, SUPPL 247:237+.
  • Gabbott, P. L., 2003. Radial organisation of neurons and dendrites in human cortical areas 25, 32, and 32’. Brain Res 992, 298-304.
  • Gabbott, P. L., Warner, T. A., Jays, P. R., and Bacon, S. J., 2003. Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993, 59-71.
  • Gebhart, G. F., Sandkuhler, J., Thalhammer, J. G., and Zimmermann, M., 1983. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. J Neurophysiol 50, 1433-1445.
  • Gent, J. P., and Wolstencroft, J. H., 1976. Effects of methionine-enkephalin and leucine-enkephalin compared with those of morphine on brainstem neurones in cat. Nature 261, 426-427.
  • Goodwin, R. D., Faravelli, C., Rosi, S., Cosci, F., Truglia, E., de Graaf, R., and Wittchen, H. U., 2005. The epidemiology of panic disorder and agoraphobia in Europe. Eur Neuropsychopharmacol 15, 435-443.
  • Graeff, F. G., 2002. On serotonin and experimental anxiety. Psychopharmacology (Berl) 163, 467-476.
  • Gramsch, C., Hollt, V., Mehraein, P., Pasi, A., and Herz, A., 1979. Regional distribution of methionine-enkephalin- and beta-endorphin- like immunoreactivity in human brain and pituitary. Brain Res 171, 261-270.
  • Gray, J. A., 1982. The Neuropsychology of Anxiety: an enquiry into functions of the septo-hippocampal system, 1st ed. Oxford University Press.
  • Green, A. L., Wang, S., Bittar, R. G., Owen, S. L., Paterson, D. J., Stein, J. F., Bain, P. G., Shlugman, D., and Aziz, T. Z., 2007. Deep brain stimulation: a new treatment for hypertension? J Clin Neurosci 14, 592-595.
  • Green, A. L., Wang, S., Owen, S. L., Xie, K., Bittar, R. G., Stein, J. F., Paterson, D. J., and Aziz, T. Z., 2006. Stimulating the human midbrain to reveal the link between pain and blood pressure. Pain 124, 349-359.
  • Griez, E., and Schruers, K., 1998. Experimental pathophysiology of panic. J Psychosom Res 45, 493-503.
  • Griez, E. J. L., Faravelli, C., Nutt, D., and Zohar, J., 2001 Anxiety Disorders: An Introduction to Clinical Management and Research
  • Guimaraes, A. P., and Prado, W. A., 1999. Pharmacological evidence for a periaqueductal gray-nucleus raphe magnus connection mediating the antinociception induced by microinjecting carbachol into the dorsal periaqueductal gray of rats. Brain Res
  • Guimaraes, F. S., Carobrez, A. P., De Aguiar, J. C., and Graeff, F. G., 1991. Anxiolytic effect in the elevated plus-maze of the NMDA receptor antagonist AP7 microinjected into the dorsal periaqueductal grey. Psychopharmacology (Berl) 103, 91-94.
  • Hamilton, B. L., 1973. Cytoarchitectural subdivisions of the periaqueductal gray matter in the cat. J Comp Neurol 149, 1-27.
  • Hamilton, B. L., 1973. Projections of the nuclei of the periaqueductal gray matter in the cat. J Comp Neurol 152, 45-58.
  • Han, F., Zhang, Y. F., and Li, Y. Q., 2003. Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study. World J Gastroenterol 9, 1045-1050.
  • Harrison, S., and Geppetti, P., 2001. Substance p. Int J Biochem Cell Biol 33, 555-576.
  • Hasue, R. H., and Shammah-Lagnado, S. J., 2002. Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454, 15-33.
  • Hebert, H., and Saper, C. B., 1992 Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J. Comp. Neurol. 315, 34-52.
  • Henderson, L. A., Keay, K. A., and Bandler, R., 1998. The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions: a functional-anatomical and physiological study. Neuroscience 82, 201-221.
  • Herbert, H., and Saper, C. B., 1992. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol 315, 34-52.
  • Hermes, M. L., Buijs, R. M., Masson-Pevet, M., and Pevet, P., 1988. Oxytocinergic innervation of the brain of the garden dormouse (Eliomys quercinus L.). J Comp Neurol 273, 252-262.
  • Herrera, M., Sanchez del Campo, F., and Smith-Agreda, V., 1987. The commissural nucleus of the inferior colliculus in the rabbit. A morphological study. J Hirnforsch 28, 671-683.
  • Hilton, S. M., 1975. Ways of viewing the central nervous control of the circulation--old and new. Brain Res 87, 213-219.
  • Hilton, S. M., and Redfern, W. S., 1986. A search for brain stem cell groups integrating the defence reaction in the rat. J Physiol 378, 213-228.
  • Hilton, S. M., and Zbrozyna, A. W., 1963. Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J Physiol 165, 160-173.
  • Holstege, G., 1987. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260, 98-126.
  • Holstege, G., 1988. Anatomical evidence for a strong ventral parabrachial projection to nucleus raphe magnus and adjacent tegmental field. Brain Res 447, 154-158.
  • Huettner, J. E., 2003. Kainate receptors and synaptic transmission. Prog Neurobiol 70, 387-407.
  • Illing, R. B., and Graybiel, A. M., 1986. Complementary and non-matching afferent compartments in the cat’s superior colliculus: innervation of the acetylcholinesterase-poor domain of the intermediate gray layer. Neuroscience 18, 373-394.
  • Imai, H., Steindler, D. A., and Kitai, S. T., 1986. The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243, 363-380.
  • Iwata, J., LeDoux, J. E., Meeley, M. P., Arneric, S., and Reis, D. J., 1986. Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res 383, 195-214.
  • Jacquet, Y. F., and Squires, R. F., 1988. Excitatory amino acids: role in morphine excitation in rat periaqueductal gray. Behav Brain Res 31, 85-88.
  • Jasmin, L., Burkey, A. R., Granato, A., and Ohara, P. T., 2004. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468, 425-440.
  • Jenck, F., Broekkamp, C. L., and Van Delft, A. M., 1989. Effects of serotonin receptor antagonists on PAG stimulation induced aversion: different contributions of 5HT1, 5HT2 and 5HT3 receptors. Psychopharmacology (Berl) 97, 489-495.
  • Jensen, T. S., and Yaksh, T. L., 1989. Comparison of the antinociceptive effect of morphine and glutamate at coincidental sites in the periaqueductal gray and medial medulla in rats. Brain Res 476, 1-9.
  • Jordan, L. M., Brownstone, R. M., and Noga, B. R., 1992. Control of functional systems in the brainstem and spinal cord. Curr Opin Neurobiol 2, 794-801.
  • Jurgens, U., and Ploog, D., 1970. Cerebral representation of vocalization in the squirrel monkey. Exp Brain Res 10, 532-554.
  • Jurgens, U., and Pratt, R., 1979. Role of the periaqueductal grey in vocal expression of emotion. Brain Res 167, 367-378.
  • Kaada, B., 1967. Brain mechanisms related to aggressive behavior. UCLA Forum Med Sci 7, 95-133.
  • Kabat, H., Magoun, H. W., and Ranson, S. W., 1935. Electrical stimulation of points in the forebrain and midbrain. The resultant alteration in blood pressure, . Arch. Neurol. Psychiat. (Chicago) 34 931-955.
  • Kandel, E. R., Schwartz, J. H., and Jessel, T. M., 1995. Essentials of neural science and behaviour. Prentice Hall International, INC. , 234-237, 297.
  • Keay, K. A., and Bandler, R., 2001. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev 25, 669-678.
  • Keay, K. A., Crowfoot, L. J., Floyd, N. S., Henderson, L. A., Christie, M. J., and Bandler, R., 1997. Cardiovascular effects of microinjections of opioid agonists into the ‘Depressor Region’ of the ventrolateral periaqueductal gray region. Brain Res 762, 61-71.
  • Kehoe, P., and Boylan, C. B., 1994. Behavioral effects of kappa-opioid-receptor stimulation on neonatal rats. Behav Neurosci 108, 418-423.
  • Kirouac, G. J., Li, S., and Mabrouk, G., 2004. GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. J Comp Neurol 469, 170-184.
  • Kirouac, G. J., and Pittman, Q. J., 2000. A projection from the ventral tegmental area to the periaqueductal gray involved in cardiovascular regulation. Am J Physiol Regul Integr Comp Physiol 278, R1643-1650.
  • Kitchen, I., Kelly, M., and Viveros, M. P., 1990. Ontogenesis of kappa-opioid receptors in rat brain using [3H]U-69593 as a binding ligand. Eur J Pharmacol 175, 93-96. Klerman, G. L., Weissman, M. M., Ouellette, R., Johnson, J., and Greenwald, S., 1991. Panic attacks in the community. Social morbidity and health care utilization. Jama 265, 742-746.
  • Kozicz, T., Vigh, S., and Arimura, A., 1998. The source of origin of PACAP- and VIP-immunoreactive fibers in the laterodorsal division of the bed nucleus of the stria terminalis in the rat. Brain Res 810, 211-219.
  • Kramer, M. S., Cutler, N., Feighner, J., Shrivastava, R., Carman, J., Sramek, J. J., Reines, S. A., Liu, G., Snavely, D., Wyatt-Knowles, E., Hale, J. J., Mills, S. G., MacCoss, M., Swain, C. J., Harrison, T., Hill, R. G., Hefti, F., Scolnick, E. M., Cascieri, M. A., Chicchi, G. G., Sadowski, S., Williams, A. R., Hewson, L., Smith, D., Carlson, E. J., Hargreaves, R. J., and Rupniak, N. M., 1998. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640-1645.
  • Krettek, J. E., and Price, J. L., 1977. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171, 157-191.
  • Krettek, J. E., and Price, J. L., 1977. Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172, 687-722.
  • Krieger, J. E., and Graeff, F. G., 1985. Defensive behavior and hypertension induced by glutamate in the midbrain central gray of the rat. Braz J Med Biol Res 18, 61-67.
  • Krout, K. E., Belzer, R. E., and Loewy, A. D., 2002. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448, 53-101.
  • Krout, K. E., and Loewy, A. D., 2000. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 424, 111-141.
  • Laemle, L. K., 1979. Neuronal populations of the human periaqueductal gray, nucleus lateralis. J Comp Neurol 186, 93-107.
  • LeDoux, J. E., 1994 The amygdala: Contributions to fear and stress. Seminal Neuroscience 6, 231-237.
  • LeDoux, J. E., Iwata, J., Cicchetti, P., and Reis, D. J., 1988. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8, 2517-2529.
  • LeDoux, J. E., Sakaguchi, A., and Reis, D. J., 1984. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4, 683-698.
  • Levy, R. A., and Proudfit, H. K., 1979. Analgesia produced by microinjection of baclofen and morphine at brain stem sites. Eur J Pharmacol 57, 43-55.
  • Li, Y. Q., Jia, H. G., Rao, Z. R., and Shi, J. W., 1990. Serotonin-, substance P- or leucine-enkephalin-containing neurons in the midbrain periaqueductal gray and nucleus raphe dorsalis send projection fibers to the central amygdaloid nucleus in the rat. Neurosci Lett 120, 124-127.
  • Li, Y. Q., Takada, M., and Mizuno, N., 1993. Demonstration of habenular neurons which receive afferent fibers from the nucleus accumbens and send their axons to the midbrain periaqueductal gray. Neurosci Lett 158, 55-58.
  • Lim, L. W., Blokland, A., Visser-Vandewalle, V., Vlamings, R., Sesia, T., Steinbusch, H., Schruers, K., Griez, E., and Temel, Y., 2008. High- frequency stimulation of the dorsolateral periaqueductal gray and ventromedial hypothalamus fails to inhibit panic-like behaviour. Behav Brain Res 193, 197-203.
  • Lima, V. C., Molchanov, M. L., Aguiar, D. C., Campos, A. C., and Guimaraes, F. S., 2007. Modulation of defensive responses and anxiety-like behaviors by group I metabotropic glutamate receptors located in the dorsolateral periaqueductal gray. Prog Neuropsychopharmacol Biol Psychiatry.
  • Lindvall, O., Bjorklund, A., Moore, R. Y., and Stenevi, U., 1974. Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81, 325-331.
  • Liu, H., Chandler, S., Beitz, A. J., Shipley, M. T., and Behbehani, M. M., 1994. Characterization of the effect of cholecystokinin (CCK) on neurons in the periaqueductal gray of the rat: immunocytochemical and in vivo and in vitro electrophysiological studies. Brain Res 642, 83-94.
  • Liu, R. P., and Hamilton, B. L., 1980. Neurons of the periaqueductal gray matter as revealed by Golgi study. J Comp Neurol 189, 403
  • Lovick, T. A., 1991. Central nervous system integration of pain control and autonomic function. NIPS 6, 82-86.
  • Lovick, T. A., 1992. Midbrain influences on ventrolateral medullo-spinal neurones in the rat. Exp Brain Res 90, 147-152.
  • Lozano, A. M., and Eltahawy, H., 2004. How does DBS work? Suppl Clin Neurophysiol 57, 733-736.
  • Mamounas, L. A., Mullen, C. A., O’Hearn, E., and Molliver, M. E., 1991. Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol 314, 558-586.
  • Manchanda, S. K., Poddar, A., Saha, S., Bhatia, S. C., Kumar, V. M., and Nayar, U., 1995. Predatory aggression induced by hypothalamic stimulation: modulation by midbrain periaqueductal gray (PAG). Neurobiology (Bp) 3, 405-417.
  • Mantyh, P. W., 1983. Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections. J Neurophysiol 49, 567-581.
  • Mantyh, P. W., 1983. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections. J Neurophysiol
  • Martin-Ruiz, R., Puig, M. V., Celada, P., Shapiro, D. A., Roth, B. L., Mengod, G., and Artigas, F., 2001. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21, 9856- 9866.
  • Martin, G. F., Humbertson, A. O., Jr., Laxson, L. C., Panneton, W. M., and Tschismadia, I., 1979. Spinal projections from the mesencephalic and pontine reticular formation in the North American Opossum: a study using axonal transport techniques. J Comp Neurol 187, 373-399.
  • Matheus, M. G., and Guimaraes, F. S., 1997. Antagonism of non-NMDA receptors in the dorsal periaqueductal grey induces anxiolytic effect in the elevated plus maze. Psychopharmacology (Berl) 132, 14-18.
  • Maubach, K. A., Rupniak, N. M., Kramer, M. S., and Hill, R. G., 1999. Novel strategies for pharmacotherapy of depression. Curr Opin Chem Biol 3, 481-488.
  • McNaughton, N., and Corr, P. J., 2004. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev 28, 285-305.
  • McNaughton, N., and Gray, J. A., 2000. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. J Affect Disord 61, 161-176.
  • McTavish, D., and Heel, R. C., 1992. Dexfenfluramine. A review of its pharmacological properties and therapeutic potential in obesity. Drugs 43, 713-733.
  • Meloni, E. G., and Davis, M., 1999. Muscimol in the deep layers of the superior colliculus/mesencephalic reticular formation blocks expression but not acquisition of fear-potentiated startle in rats. Behav Neurosci 113, 1152-1160.
  • Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., and Caron, M. G., 1998. Dopamine receptors: from structure to function. Physiol Rev 78, 189-225.
  • Miyawaki, T., Goodchild, A. K., and Pilowsky, P. M., 2001. Rostral ventral medulla 5-HT1A receptors selectively inhibit the somatosympathetic reflex. Am J Physiol Regul Integr Comp Physiol 280, R1261-1268.
  • Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., Dolan, R. J., and Frith, C. D., 2007. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317, 1079-1083.
  • Molchanov, M. L., and Guimaraes, F. S., 1999. Defense reaction induced by a metabotropic glutamate receptor agonist microinjected into the dorsal periaqueductal gray of rats. Braz J Med Biol Res 32, 1533-1537.
  • Montgomery, E. B., Jr., and Gale, J. T., 2007. Mechanisms of action of deep brain stimulation (DBS). Neurosci Biobehav Rev.
  • Moore, K. E., Annunziato, L., and Gudelsky, G. A., 1978. Studies on tuberoinfundibular dopamine neurons. Adv Biochem Psychopharmacol 19, 193-204.
  • Moore, R. Y., 1978. Catecholamin innervation of the basal forebrain. I. The septal area. J Comp Neurol 177, 665-684.
  • Moore, R. Y., and Bloom, F. E., 1978. Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1, 129-169.
  • Moran, T. H., Robinson, P. H., Goldrich, M. S., and McHugh, P. R., 1986. Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res 362, 175-179.
  • Moreau, J. L., and Fields, H. L., 1986. Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res 397, 37-46.
  • Moreira, F. A., Molchanov, M. L., and Guimaraes, F. S., 2004. Ionotropic glutamate-receptor antagonists inhibit the aversive effects of nitric oxide donor injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology (Berl) 171, 199-203.
  • Morgan, M. M., Clayton, C. C., and Lane, D. A., 2003. Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance. Neuroscience 118, 227-232.
  • Mouton, L. J., Klop, E. M., and Holstege, G., 2005. C1-C3 spinal cord projections to periaqueductal gray and thalamus: a quantitative retrograde tracing study in cat. Brain Res 1043, 87-94.
  • N’Gouemo, P., and Faingold, C. L., 1999. The periaqueductal grey is a critical site in the neuronal network for audiogenic seizures: modulation by GABA(A), NMDA and opioid receptors. Epilepsy Res 35, 39-46.
  • Nashold, B. S., Jr., Wilson, W. P., and Slaughter, D. G., 1969. Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30, 14-24.
  • Neafsey, E. J., Bold, E. L., Haas, G., Hurley-Gius, K. M., Quirk, G., Sievert, C. F., and Terreberry, R. R., 1986. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396, 77-96. Nogueira, R. L., and Graeff, F. G., 1995. Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52, 1-6.
  • Olszewki, J., and Baxter, D., 1954. Cytoarchitecture of the Human Brainstem. . Philadelphia: J. B. Lippincott.
  • Ongur, D., An, X., and Price, J. L., 1998. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401, 480-505.
  • Pajolla, G. P., and de Aguiar Correa, F. M., 2004. Cardiovascular responses to the injection of L-glutamate in the lateral hypothalamus of unanesthetized or anesthetized rats. Auton Neurosci 116, 19-29.
  • Pajolla, G. P., Tavares, R. F., Pelosi, G. G., and Correa, F. M., 2005. Involvement of the periaqueductal gray in the hypotensive response evoked by L-glutamate microinjection in the lateral hypothalamus of unanesthetized rats. Auton Neurosci 122, 84-93.
  • Pelosi, G. G., and Correa, F. M., 2005. Cardiovascular effects of noradrenaline microinjected into the dorsal periaqueductal gray area of unanaesthetized rats. Eur J Neurosci 22, 3188-3194.
  • Peterson, S. L., Armstrong, J. J., and Walker, M. K., 2000. Focal microinjection of carbachol into the periaqueductal gray induces seizures in the forebrain of the rat. Epilepsy Res 42, 169-181.
  • Petit, J. M., Luppi, P. H., Peyron, C., Rampon, C., and Jouvet, M., 1995. VIP-like immunoreactive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neurosci Lett 193, 77-80.
  • Petrov, T., Jhamandas, J. H., and Krukoff, T. L., 1992. Characterization of peptidergic efferents from the lateral parabrachial nucleus to identified neurons in the rat dorsal raphe nucleus. J Chem Neuroanat 5, 367-373.
  • Peyron, C., Luppi, P. H., Fort, P., Rampon, C., and Jouvet, M., 1996. Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. J Comp Neurol 364, 402-413.
  • Pfeiffer, A., Feuerstein, G., Faden, A., and Kopin, I. J., 1982. Evidence for an involvement of mu-, but not delta- or kappa-opiate receptors in sympathetically and parasympathetically mediated cardiovascular responses to opiates upon anterior hypothalamic injection. Life Sci 31, 1279-1282.
  • Pfeiffer, A., and Herz, A., 1982. Different types of opiate agonists interact distinguishably with mu, delta and kappa opiate binding sites. Life Sci 31, 1355-1358.
  • Pfeiffer, A., Pasi, A., Mehraein, P., and Herz, A., 1982. Opiate receptor binding sites in human brain. Brain Res 248, 87-96.
  • Pittius, C. W., Seizinger, B. R., Pasi, A., Mehraein, P., and Herz, A., 1984. Distribution and characterization of opioid peptides derived from proenkephalin A in human and rat central nervous system. Brain Res 304, 127-136.
  • Pobbe, R. L., and Zangrossi, H., Jr., 2005. 5-HT(1A) and 5-HT(2A) receptors in the rat dorsal periaqueductal gray mediate the antipanic- like effect induced by the stimulation of serotonergic neurons in the dorsal raphe nucleus. Psychopharmacology (Berl) 183, 314-321.
  • Pohle, W., Ott, T., and Muller-Welde, P., 1984. Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J Hirnforsch 25, 1-10.
  • Price, J. L., and Amaral, D. G., 1981. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1, 1242-1259.
  • Raisinghani, M., and Faingold, C. L., 2003. Identification of the requisite brain sites in the neuronal network subserving generalized clonic audiogenic seizures. Brain Res 967, 113-122.
  • Ray, J. P., and Price, J. L., 1992. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323, 167-197.
  • Reep, R. L., and Winans, S. S., 1982. Efferent connections of dorsal and ventral agranular insular cortex in the hamster, Mesocricetus auratus. Neuroscience 7, 2609-2635.
  • Reichling, D. B., and Basbaum, A. I., 1990. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J Comp Neurol 302, 370-377.
  • Renno, W. M., Mahmoud, M. S., Hamdi, A., and Beitz, A. J., 1999. Quantitative immunoelectron microscopic colocalization of GABA and enkephalin in the ventrocaudal periaqueductal gray of the rat. Synapse 31, 216-228.
  • Renoldi, G., and Invernizzi, R. W., 2006. Blockade of tachykinin NK1 receptors attenuates stress-induced rise of extracellular noradrenaline and dopamine in the rat and gerbil medial prefrontal cortex. J Neurosci Res 84, 961-968.
  • Richardson, D. E., and Akil, H., 1977. Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. J Neurosurg 47, 178-183.
  • Richardson, D. E., and Akil, H., 1977. Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. J Neurosurg 47, 184-194.
  • Richter, R. C., and Behbehani, M. M., 1991. Evidence for glutamic acid as a possible neurotransmitter between the mesencephalic nucleus cuneiformis and the medullary nucleus raphe magnus in the lightly anesthetized rat. Brain Res 544, 279-286.
  • Rizvi, T. A., Ennis, M., Behbehani, M. M., and Shipley, M. T., 1991. Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303, 121-131.
  • Rossi, G. C., Pasternak, G. W., and Bodnar, R. J., 1994. Mu and delta opioid synergy between the periaqueductal gray and the rostro- ventral medulla. Brain Res 665, 85-93.
  • Saha, S. N., Bhatia, S. C., and Nayar, U., 2004. Adrenergic involvement in the locus ceruleus and adjoining regions in the facilitation of predatory attack behavior as induced by hypothalamic stimulation in cats. Indian J Physiol Pharmacol 48, 51-58.
  • Sandkuhler, J., and Gebhart, G. F., 1984. Characterization of inhibition of a spinal nociceptive reflex by stimulation medially and laterally in the midbrain and medulla in the pentobarbital-anesthetized rat. Brain Res 305, 67-76.
  • Saper, C. B., 1979. Anatomical substrates for the hypothalamic control of the autonomic nervous system. In Integrative Functions of the Autonomic Nervous System, C. McBrooks, K. Loizumi, and A. Sato, eds. U. Tokyo Press, Tokyo. . 333-341.
  • Schmitt, P., Di Scala, G., Brandao, M. L., and Karli, P., 1985. Behavioral effects of microinjections of SR 95103, a new GABA-A antagonist, into the medial hypothalamus or the mesencephalic central gray. Eur J Pharmacol 117, 149-158.
  • Schutz, M. T., de Aguiar, J. C., and Graeff, F. G., 1985. Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology (Berl) 85, 340-345.
  • Schwaber, J. S., Kapp, B. S., Higgins, G. A., and Rapp, P. R., 1982. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. . J. Neurosci. 2: 1424-1438, 1424-1438.
  • Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1988. Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J Comp Neurol 267, 433-453.
  • Semenenko, F. M., and Lumb, B. M., 1992. Projections of anterior hypothalamic neurones to the dorsal and ventral periaqueductal grey in the rat. Brain Res 582, 237-245.
  • Seroogy, K. B., Dangaran, K., Lim, S., Haycock, J. W., and Fallon, J. H., 1989. Ventral mesencephalic neurons containing both cholecystokinin- and tyrosine hydroxylase-like immunoreactivities project to forebrain regions. J Comp Neurol 279, 397- 414.
  • Seroogy, K. B., and Fallon, J. H., 1989. Forebrain projections from cholecystokininlike-immunoreactive neurons in the rat midbrain. J Comp Neurol 279, 415-435.
  • Shaikh, M. B., De Lanerolle, N. C., and Siegel, A., 1997. Serotonin 5-HT1A and 5-HT2/1C receptors in the midbrain periaqueductal gray differentially modulate defensive rage behavior elicited from the medial hypothalamus of the cat. Brain Res 765, 198-207.
  • Shammah-Lagnado, S. J., Alheid, G. F., and Heimer, L., 2001. Striatal and central extended amygdala parts of the interstitial nucleus of the posterior limb of the anterior commissure: evidence from tract-tracing techniques in the rat. J Comp Neurol 439, 104-126.
  • Shipley, M. T., Ennis, M., Rizvi, T. A., and Behbehani, M. M., 1991. Topographical specificity of forebrain inputs to the midbrain periaqueductal gray: Evidence for discrete longitudinally organized input columns. In A. Depaulis and R. Bandler (eds): The Midbrain Periaqueductal Gray Matter. New York: Plenum,, 417-448.
  • Siegel, A., and Edinger, H., ; pp. , , 1981. Neural control of aggression and rage behavior. In Handbook of the Hypothalamus, vol. 3: Behavioral Studies of the Hypothalamus, P.J. Morgane and J. Panksevv, eds. Dekker, New York. 203-240.
  • Siegel, A., Schubert, K. L., and Shaikh, M. B., 1997. Neurotransmitters regulating defensive rage behavior in the cat. Neurosci Biobehav Rev 21, 733-742.
  • Singewald, N., and Sharp, T., 2000. Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by Fos immunocytochemistry. Neuroscience 98, 759-770.
  • Snowball, R. K., Semenenko, F. M., and Lumb, B. M., 2000. Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study. Neuroscience 99, 351- 361.
  • Steinbusch, H. W., 1981. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6, 557-618.
  • Stratford, T. R., and Wirtshafter, D., 1990. Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res 511, 173-176.
  • Sun, M. K., and Guyenet, P. G., 1986. Hypothalamic glutamatergic input to medullary sympathoexcitatory neurons in rats. Am J Physiol 251, R798-810.
  • Swanson, L. W., Mogenson, G. J., Gerfen, C. R., and Robinson, P., 1984. Evidence for a projection from the lateral preoptic area and substantia innominata to the ‚mesencephalic locomotor region‘ in the rat. Brain Res 295, 161-178.
  • Swanson, L. W., and Sawchenko, P. E., 1983. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6, 269-324.
  • Tanaka, M., Okamura, H., Tamada, Y., Nagatsu, I., Tanaka, Y., and Ibata, Y., 1994. Catecholaminergic input to spinally projecting serotonin neurons in the rostral ventromedial medulla oblongata of the rat. Brain Res Bull 35, 23-30.
  • Thornton, J. M., Aziz, T., Schlugman, D., and Paterson, D. J., 2002. Electrical stimulation of the midbrain increases heart rate and arterial blood pressure in awake humans. J Physiol 539, 615-621.
  • Tredici, G., Bianchi, R., and Gioia, M., 1983. Short intrinsic circuit in the periaqueductal gray matter of the cat. Neurosci Lett 39, 131- 136.
  • Van der Kooy, D., and Hattori, T., 1980. Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res 186, 1-7.
  • Van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R., and Bloom, F. E., 1984. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224, 1-24.
  • Velayos, J. L., and Reinoso-Suarez, F., 1982. Topographic organization of the brainstem afferents to the mediodorsal thalamic nucleus. J Comp Neurol 206, 17-27.
  • Versteeg, D. H., Palkovits, M., Van der Gugten, J., Wijnen, H. L., Smeets, G. W., and de Jong, W., 1976. Catecholamine content of individual brain regions of spontaneously hypertensive rats (SH-rats). Brain Res 112, 429-434.
  • Versteeg, D. H., Van Der Gugten, J., De Jong, W., and Palkovits, M., 1976. Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res 113, 563-574.
  • Vertes, R. P., 1991. A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313, 643-668.
  • Viana, M. B., Graeff, F. G., and Loschmann, P. A., 1997. Kainate microinjection into the dorsal raphe nucleus induces 5-HT release in the amygdala and periaqueductal gray. Pharmacol Biochem Behav 58, 167-172.
  • Vianna, D. M., Borelli, K. G., Ferreira-Netto, C., Macedo, C. E., and Brandao, M. L., 2003. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds. Brain Res Bull 62, 179-189.
  • Vianna, D. M., and Brandao, M. L., 2003. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 36, 557-566.
  • Vianna, D. M., Graeff, F. G., Brandao, M. L., and Landeira-Fernandez, J., 2001. Defensive freezing evoked by electrical stimulation of the periaqueductal gray: comparison between dorsolateral and ventrolateral regions. Neuroreport 12, 4109-4112.
  • Vianna, D. M., Graeff, F. G., Landeira-Fernandez, J., and Brandao, M. L., 2001. Lesion of the ventral periaqueductal gray reduces conditioned fear but does not change freezing induced by stimulation of the dorsal periaqueductal gray. Learn Mem 8, 164-169.
  • Vianna, D. M., Landeira-Fernandez, J., and Brandao, M. L., 2001. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci Biobehav Rev 25, 711-719.
  • Walsh, S. L., Geter-Douglas, B., Strain, E. C., and Bigelow, G. E., 2001. Enadoline and butorphanol: evaluation of kappa-agonists on cocaine pharmacodynamics and cocaine self-administration in humans. J Pharmacol Exp Ther 299, 147-158.
  • Wang, M. R., Kuo, J. S., and Chai, C. Y., 2001. Nitric oxide produces different actions in different areas of the periaqueductal grey in cats. Neurosci Lett 309, 57-61.
  • Weiner, S., Shaikh, M. B., Shaikh, A. B., and Siegel, A., 1991. Enkephalinergic involvement in periaqueductal gray control of hypothalamically elicited predatory attack in the cat. Physiol Behav 49, 1099-1105.
  • Williams, F. G., Mullet, M. A., and Beitz, A. J., 1995. Basal release of Met-enkephalin and neurotensin in the ventrolateral periaqueductal gray matter of the rat: a microdialysis study of antinociceptive circuits. Brain Res 690, 207-216.
  • Wittchen, H. U., 1988. Natural course and spontaneous remissions of untreated anxiety disorders-results of the Munich follow-up study (MFS). In: I. Hand and H.U. Wittchen, Editors, Panic and Phobias: 2. Treatments and Variables Affecting Course and Outcome, Springer, Berlin 3-17.
  • Yang, Z., and Coote, J. H., 1998. Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat. J Physiol 513 ( Pt 2), 521-530.
  • Yardley, C. P., and Hilton, S. M., 1986. The hypothalamic and brainstem areas from which the cardiovascular and behavioural components of the defence raction are elicited in the rat. J Auton Nerv Syst 15, 227-244.
  • Yasui, Y., Itoh, K., Kaneko, T., Shigemoto, R., and Mizuno, N., 1991. Topographical projections from the cerebral cortex to the nucleus of the solitary tract in the cat. Exp Brain Res 85, 75-84.
  • Yoshida, M., Shirouzu, M., Tanaka, M., Semba, K., and Fibiger, H. C., 1989. Dopaminergic neurons in the nucleus raphe dorsalis innervate the prefrontal cortex in the rat: a combined retrograde tracing and immunohistochemical study using anti- dopamine serum. Brain Res 496, 373-376.
  • Young, R. F., Kroening, R., Fulton, W., Feldman, R. A., and Chambi, I., 1985. Electrical stimulation of the brain in treatment of chronic pain. Experience over 5 years. J Neurosurg 62, 389-396.
  • Zanoveli, J. M., Netto, C. F., Guimaraes, F. S., and Zangrossi, H., Jr., 2004. Systemic and intra-dorsal periaqueductal gray injections of cholecystokinin sulfated octapeptide (CCK-8s) induce a panic-like response in rats submitted to the elevated T-maze. Peptides 25, 1935-1941.
  • Zarbin, M. A., Innis, R. B., Wamsley, J. K., Snyder, S. H., and Kuhar, M. J., 1983. Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neurosci 3, 877-906.
  • Zhang, Y. H., Yanase-Fujiwara, M., Hosono, T., and Kanosue, K., 1995. Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats? J Physiol 485 ( Pt 1), 195-202.
  • Zhao, Z., and Davis, M., 2004. Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/ deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 24, 10326- 10334.
  • Zieglgansberger, W., and Puil, E. A., 1973. Actions of glutamic acid on spinal neurones. Exp Brain Res 17, 35-49.
Toplam 267 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Basic Medical Sciences
Yazarlar

Lee Wei Lim Bu kişi benim

Arjan Blokland Bu kişi benim

Veerle Visser-vandevalle Bu kişi benim

Harry Steinbusch Bu kişi benim

Yasin Temel Bu kişi benim

Yayımlanma Tarihi 6 Aralık 2010
Gönderilme Tarihi 23 Kasım 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 26 Sayı: 1

Kaynak Göster

APA Lim, L. W., Blokland, A., Visser-vandevalle, V., Steinbusch, H., vd. (2010). The Periaqueductal Gray: From Longitudinal columns to defensive behaviour. Journal of Experimental and Clinical Medicine, 26(1), 1-26. https://doi.org/10.5835/jecm.v26i1.420
AMA Lim LW, Blokland A, Visser-vandevalle V, Steinbusch H, Temel Y. The Periaqueductal Gray: From Longitudinal columns to defensive behaviour. J. Exp. Clin. Med. Aralık 2010;26(1):1-26. doi:10.5835/jecm.v26i1.420
Chicago Lim, Lee Wei, Arjan Blokland, Veerle Visser-vandevalle, Harry Steinbusch, ve Yasin Temel. “The Periaqueductal Gray: From Longitudinal Columns to Defensive Behaviour”. Journal of Experimental and Clinical Medicine 26, sy. 1 (Aralık 2010): 1-26. https://doi.org/10.5835/jecm.v26i1.420.
EndNote Lim LW, Blokland A, Visser-vandevalle V, Steinbusch H, Temel Y (01 Aralık 2010) The Periaqueductal Gray: From Longitudinal columns to defensive behaviour. Journal of Experimental and Clinical Medicine 26 1 1–26.
IEEE L. W. Lim, A. Blokland, V. Visser-vandevalle, H. Steinbusch, ve Y. Temel, “The Periaqueductal Gray: From Longitudinal columns to defensive behaviour”, J. Exp. Clin. Med., c. 26, sy. 1, ss. 1–26, 2010, doi: 10.5835/jecm.v26i1.420.
ISNAD Lim, Lee Wei vd. “The Periaqueductal Gray: From Longitudinal Columns to Defensive Behaviour”. Journal of Experimental and Clinical Medicine 26/1 (Aralık 2010), 1-26. https://doi.org/10.5835/jecm.v26i1.420.
JAMA Lim LW, Blokland A, Visser-vandevalle V, Steinbusch H, Temel Y. The Periaqueductal Gray: From Longitudinal columns to defensive behaviour. J. Exp. Clin. Med. 2010;26:1–26.
MLA Lim, Lee Wei vd. “The Periaqueductal Gray: From Longitudinal Columns to Defensive Behaviour”. Journal of Experimental and Clinical Medicine, c. 26, sy. 1, 2010, ss. 1-26, doi:10.5835/jecm.v26i1.420.
Vancouver Lim LW, Blokland A, Visser-vandevalle V, Steinbusch H, Temel Y. The Periaqueductal Gray: From Longitudinal columns to defensive behaviour. J. Exp. Clin. Med. 2010;26(1):1-26.