Research Article
BibTex RIS Cite

The impact of omega-3 fatty acids on lung histopathology in mice model of chronic asthma

Year 2014, Volume: 31 Issue: 2, 95 - 98, 10.09.2014

Abstract

 We aimed to determine the impact of the diet enriched with omega 3 fatty acids, a potential anti-inflammatory agent, on chronic changes of asthma in a mice model. Therapeutic modalities have not yet been proved to be successful in reversing alreadyestablished chronic changes of airways in asthma. For this reason, interventions including dietary changes before the sensitization and remodeling period would prevent those changes. Six-week old female Balb/c mice (n=18) were divided into two groups. During the development of chronic asthma model, mice in omega-3 fatty acid group received a diet enriched with omega-3 fatty acids, whereas mice in the other group received a diet with saturated fatty acids. Balb/c mice were sensitized intraperitoneally in both groups using 10 μg/100 μl of ovalbumin (OVA) and 1.5 mg Al (OH)3 on days 1, 14 and 21. Primed mice were challenged by repeated intranasal instillation of 20 μg/10 μl OVA three times a week. Mice were sacrificed and bronchoalveolar lavage fluid was obtained 24 h after the last challenge (day 77). The lungs were removed for histological examination. The omega-3 fatty acid group showed significantly reduced neutrophil percentage in bronchoalveolar lavage fluid. There was no statistically significant difference between the two groups in lymphocyte, macrophage and eosinophil percentages. The mean basement membrane thickness was less severe in the omega-3 group than the saturated fatty acid group. There was no significant difference between the two groups for goblet cell numbers, subepithelial smooth muscle of airways, and bronchial-associated lymphoid tissue. The findings of this study suggest that consumption of omega-3 fatty acids would prevent some of the chronic changes of airways due to asthma. Future studies are needed to evaluate the potential preventive and therapeutic effects of omega-3 fatty acids in asthma.

References

  • Blümer, N., Herz, U., Wegmann, M., Renz, H., 2005. Prenatal lipopolysasaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway hyperresponsiveness in a murine model of experimental asthma. Clin. Exp. Allergy. 35, 397-402.
  • Blümer, N., Renz, H., 2007. Consumption of omega-3-fatty acids during perinatal life: Role in immuno-modulation and allergy prevention. J. Perinat. Med. 35, 12-18.
  • Brandenberger, C., Rowley, N.L., Jackson-Humbles, D.N., Zhang, Q., Bramble, L.A., Lewandowski, RP., Wagner, J.G., Chen, W., Kaplan, B.L., Kaminski, N.E., Baker, G.L., Worden, R.M., Harkema, J.R., 2013. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Particle and Fibre Toxicology. 10, 26. doi: 10.1186/1743-8977-10-26.
  • Calder, PC., 2002. Dietary modification of inflammation with lipids. Proc. Nutr. Soc. 61, 345-358.
  • Calder, PC., 2001. Polyunsaturated fatty acids, inflammation, and immunity. Lipids. 36, 1007-1024.
  • Calder, PC., Yaqoob, P., Thies, F., Wallace, F.A., Miles, E.A., 2002. Fatty acids and lymphocyte functions. Br. J. Nutr. 87, 31-48.
  • Dahl, R., 2006. Systemic side effects of inhaled corticosteroids in patients with astma. Respir. Med.100, 1307-1317.
  • Fahy, J.V., Corry, D.B., Boushey, H.A., 2000. Airway inflammation and remodeling in asthma. Curr. Opin. Pulm. Med. 6, 15-20.
  • Irons, R., Anderson, M.J., Zhang, M., Fritsche, K.L., 2003. Dietary fish oil impairs primary host resistance against Listeria monocytogenes more than the immunological memory response. J. Nutr. 133, 1163-1169.
  • James, M.J., Gibson, R.A., Cleland, L.G., 2000. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 71, 343-348.
  • Jolly, C.A., Jiang, Y.H., Chapkin, R.S., McMurray, D.N., 1997. Dietary (n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion and the formation of diacylglycerol and ceramide. J. Nutr. 127, 37-43.
  • Kim, M.S., Cho, K.A., Cho, Y.J., Woo, S.Y., 2013. Effects of interleukin-9 blockade on chronic airway inflammation in murine asthma models. Allergy. Asthma. Immunol. Res. 5, 197-206. doi: 10.4168/aair.2013.5.4.197.
  • Korotkova, M., Telemo, E., Hanson, L.A., Strandvik, B., 2004a. Modulation of neonatal immunological tolerance to ovalbumin by maternal essential fatty acid intake. Pediatr. Allergy. Immunol. 15, 112.
  • Korotkova, M., Telemo, E., Yamashiro, Y., Hanson, L.A., Strandvik, B., 2004b. The ratio of n-6 to n-3 fatty acids in maternal diet influences the induction of neonatal immunological tolerance to ovalbumin. Clin. Exp. Immunol. 137, 237.
  • Nabe, T., Hosokawa, F., Matsuya, K., Morishita, T., Ikedo, A., Fujii, M., Mizutani, N., Yoshino, S., Chaplin, D.D., 2011. Important role of neutrophils in the late asthmatic response in mice. Life. Sci. 88, 1127-1135. doi: 10.1016/j.lfs.2011.04.003.
  • Nabe, T., Zindl, C.L., Jung, Y.W., Stephens, R., Sakamoto, A., Kohno, S., Atkinson, T.P., Chaplin, D.D., 2005. Induction of a late asthmatic response associated with airway inflammation in mice. Eur. J. Pharmacol. 521, 144-155.
  • Peterson, L.D., Jeffery, N.M., Thies, F., Sanderson, P., Newsholme, E.A., Calder, P.C., 1998a. Eicosapentaenoic and docosahexaenoic acids alter rat spleen leukocyte fatty acid composition and prostaglandin E2 production but have different effects on lymphocyte functions and cell-mediated immunity. Lipids. 33, 171-180.
  • Peterson, L.D., Thies, F., Sanderson, P., Newsholme, E.A., Calder, P.C., 1998b. Low levels of eicosapentaenoic and docosahexaenoic acids mimic the effects of fish oil upon rat lymphocytes. Life. Sci. 62, 2209-2217.
  • Reeves, P.G., 1997. Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr. 127, 838-841.
  • Sidhu, K.S., 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharmacol. 38, 336-344. Wallace, F.A., Miles, E.A., Evans, C., Stock T.E, Yaqoob P, Calder P.C, 2001. Dietary fatty acids influence the production of Th1-but not Th2-type cytokines. J. Leukoc. Biol. 69, 449-455.
  • Wegmann, M., Renz, H., 2005. Animal models of experimental asthma. Ernst. Schring. Res. Found. Workshop. 50, 69-87.
  • Yang, Y., Hsu, H., Wang, K., Han, C., Chen, C., Chen, C., Ko, W., 2011. Hesperetin-7,3’-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio. J. Biomed. Sci. 18, 84. doi: 1186/1423-0127-18-84.
  • Yokoyama, A., Hamazaki, T., Ohshita, A., Kohno, N., Sakai, K., Zhao, G.D., Katayama, H., Hiwada, K., 2000. Effect of aerosolized docosahexaenoic acid in a mouse model of atopic asthma. Int. Arch. Allergy. Immunol. 123, 327-332
Year 2014, Volume: 31 Issue: 2, 95 - 98, 10.09.2014

Abstract

References

  • Blümer, N., Herz, U., Wegmann, M., Renz, H., 2005. Prenatal lipopolysasaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway hyperresponsiveness in a murine model of experimental asthma. Clin. Exp. Allergy. 35, 397-402.
  • Blümer, N., Renz, H., 2007. Consumption of omega-3-fatty acids during perinatal life: Role in immuno-modulation and allergy prevention. J. Perinat. Med. 35, 12-18.
  • Brandenberger, C., Rowley, N.L., Jackson-Humbles, D.N., Zhang, Q., Bramble, L.A., Lewandowski, RP., Wagner, J.G., Chen, W., Kaplan, B.L., Kaminski, N.E., Baker, G.L., Worden, R.M., Harkema, J.R., 2013. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Particle and Fibre Toxicology. 10, 26. doi: 10.1186/1743-8977-10-26.
  • Calder, PC., 2002. Dietary modification of inflammation with lipids. Proc. Nutr. Soc. 61, 345-358.
  • Calder, PC., 2001. Polyunsaturated fatty acids, inflammation, and immunity. Lipids. 36, 1007-1024.
  • Calder, PC., Yaqoob, P., Thies, F., Wallace, F.A., Miles, E.A., 2002. Fatty acids and lymphocyte functions. Br. J. Nutr. 87, 31-48.
  • Dahl, R., 2006. Systemic side effects of inhaled corticosteroids in patients with astma. Respir. Med.100, 1307-1317.
  • Fahy, J.V., Corry, D.B., Boushey, H.A., 2000. Airway inflammation and remodeling in asthma. Curr. Opin. Pulm. Med. 6, 15-20.
  • Irons, R., Anderson, M.J., Zhang, M., Fritsche, K.L., 2003. Dietary fish oil impairs primary host resistance against Listeria monocytogenes more than the immunological memory response. J. Nutr. 133, 1163-1169.
  • James, M.J., Gibson, R.A., Cleland, L.G., 2000. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 71, 343-348.
  • Jolly, C.A., Jiang, Y.H., Chapkin, R.S., McMurray, D.N., 1997. Dietary (n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion and the formation of diacylglycerol and ceramide. J. Nutr. 127, 37-43.
  • Kim, M.S., Cho, K.A., Cho, Y.J., Woo, S.Y., 2013. Effects of interleukin-9 blockade on chronic airway inflammation in murine asthma models. Allergy. Asthma. Immunol. Res. 5, 197-206. doi: 10.4168/aair.2013.5.4.197.
  • Korotkova, M., Telemo, E., Hanson, L.A., Strandvik, B., 2004a. Modulation of neonatal immunological tolerance to ovalbumin by maternal essential fatty acid intake. Pediatr. Allergy. Immunol. 15, 112.
  • Korotkova, M., Telemo, E., Yamashiro, Y., Hanson, L.A., Strandvik, B., 2004b. The ratio of n-6 to n-3 fatty acids in maternal diet influences the induction of neonatal immunological tolerance to ovalbumin. Clin. Exp. Immunol. 137, 237.
  • Nabe, T., Hosokawa, F., Matsuya, K., Morishita, T., Ikedo, A., Fujii, M., Mizutani, N., Yoshino, S., Chaplin, D.D., 2011. Important role of neutrophils in the late asthmatic response in mice. Life. Sci. 88, 1127-1135. doi: 10.1016/j.lfs.2011.04.003.
  • Nabe, T., Zindl, C.L., Jung, Y.W., Stephens, R., Sakamoto, A., Kohno, S., Atkinson, T.P., Chaplin, D.D., 2005. Induction of a late asthmatic response associated with airway inflammation in mice. Eur. J. Pharmacol. 521, 144-155.
  • Peterson, L.D., Jeffery, N.M., Thies, F., Sanderson, P., Newsholme, E.A., Calder, P.C., 1998a. Eicosapentaenoic and docosahexaenoic acids alter rat spleen leukocyte fatty acid composition and prostaglandin E2 production but have different effects on lymphocyte functions and cell-mediated immunity. Lipids. 33, 171-180.
  • Peterson, L.D., Thies, F., Sanderson, P., Newsholme, E.A., Calder, P.C., 1998b. Low levels of eicosapentaenoic and docosahexaenoic acids mimic the effects of fish oil upon rat lymphocytes. Life. Sci. 62, 2209-2217.
  • Reeves, P.G., 1997. Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr. 127, 838-841.
  • Sidhu, K.S., 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharmacol. 38, 336-344. Wallace, F.A., Miles, E.A., Evans, C., Stock T.E, Yaqoob P, Calder P.C, 2001. Dietary fatty acids influence the production of Th1-but not Th2-type cytokines. J. Leukoc. Biol. 69, 449-455.
  • Wegmann, M., Renz, H., 2005. Animal models of experimental asthma. Ernst. Schring. Res. Found. Workshop. 50, 69-87.
  • Yang, Y., Hsu, H., Wang, K., Han, C., Chen, C., Chen, C., Ko, W., 2011. Hesperetin-7,3’-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio. J. Biomed. Sci. 18, 84. doi: 1186/1423-0127-18-84.
  • Yokoyama, A., Hamazaki, T., Ohshita, A., Kohno, N., Sakai, K., Zhao, G.D., Katayama, H., Hiwada, K., 2000. Effect of aerosolized docosahexaenoic acid in a mouse model of atopic asthma. Int. Arch. Allergy. Immunol. 123, 327-332
There are 23 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Basic Medical Sciences
Authors

Kayi Eliaçık This is me

Ayse Yenigün This is me

İbrahim Meteoğlu This is me

Muharrem Balkaya This is me

Publication Date September 10, 2014
Submission Date March 12, 2014
Published in Issue Year 2014 Volume: 31 Issue: 2

Cite

APA Eliaçık, K., Yenigün, A., Meteoğlu, İ., Balkaya, M. (2014). The impact of omega-3 fatty acids on lung histopathology in mice model of chronic asthma. Journal of Experimental and Clinical Medicine, 31(2), 95-98.
AMA Eliaçık K, Yenigün A, Meteoğlu İ, Balkaya M. The impact of omega-3 fatty acids on lung histopathology in mice model of chronic asthma. J. Exp. Clin. Med. September 2014;31(2):95-98.
Chicago Eliaçık, Kayi, Ayse Yenigün, İbrahim Meteoğlu, and Muharrem Balkaya. “The Impact of Omega-3 Fatty Acids on Lung Histopathology in Mice Model of Chronic Asthma”. Journal of Experimental and Clinical Medicine 31, no. 2 (September 2014): 95-98.
EndNote Eliaçık K, Yenigün A, Meteoğlu İ, Balkaya M (September 1, 2014) The impact of omega-3 fatty acids on lung histopathology in mice model of chronic asthma. Journal of Experimental and Clinical Medicine 31 2 95–98.
IEEE K. Eliaçık, A. Yenigün, İ. Meteoğlu, and M. Balkaya, “The impact of omega-3 fatty acids on lung histopathology in mice model of chronic asthma”, J. Exp. Clin. Med., vol. 31, no. 2, pp. 95–98, 2014.
ISNAD Eliaçık, Kayi et al. “The Impact of Omega-3 Fatty Acids on Lung Histopathology in Mice Model of Chronic Asthma”. Journal of Experimental and Clinical Medicine 31/2 (September 2014), 95-98.
JAMA Eliaçık K, Yenigün A, Meteoğlu İ, Balkaya M. The impact of omega-3 fatty acids on lung histopathology in mice model of chronic asthma. J. Exp. Clin. Med. 2014;31:95–98.
MLA Eliaçık, Kayi et al. “The Impact of Omega-3 Fatty Acids on Lung Histopathology in Mice Model of Chronic Asthma”. Journal of Experimental and Clinical Medicine, vol. 31, no. 2, 2014, pp. 95-98.
Vancouver Eliaçık K, Yenigün A, Meteoğlu İ, Balkaya M. The impact of omega-3 fatty acids on lung histopathology in mice model of chronic asthma. J. Exp. Clin. Med. 2014;31(2):95-8.