Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 38 Sayı: 3s, 119 - 122, 09.05.2021

Öz

Kaynakça

  • Alghazzawi, T.F., 2016. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 60, 72-84.
  • Ayyıldız, S., Soylu, E.H., İde, S., Kılıç, S., Sipahi, C., Pişkin, B., Gökçe, H.S., 2013. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness. J. Adv. Prosthodont. 5, 471-478.
  • Bosch, G., Ender, A., Mehl, A., 2014. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J. Prosthet. Dent. 112, 1425-1431.
  • Braian, M., Jönsson, D., Kevci, M., Wennerberg, A., 2018. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: A comparative in vitro study. Dent. Mater. 34, 978-993.
  • Ciocca, L., Meneghello, R., Savio, G., Scheda, L., Monaco, C., Gatto, M.R., Micarelli, C., Baldissara, P., 2019. Manufacturing of Metal Frameworks for Full‐Arch Dental Restoration on Implants: A Comparison between Milling and a Novel Hybrid Technology. J. Prosthodont. 28, 556-563.
  • Ekren, O., Ozkomur, A., Ucar, Y., 2018. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J. Prosthet. Dent. 119, 481-487.
  • Gu, D., Shen, Y., 2009. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 30, 2903-2910.
  • Kaleli, N., Saraç, D., 2017a. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J. Prosthet. Dent. 118, 76-82.
  • Kaleli, N., Saraç, D., 2017b. Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods. J. Prosthet. Dent. 117, 656-661.
  • Kaleli, N., Ural, Ç., 2020. Digital evaluation of laser scanning speed effects on the intaglio surface adaptation of laser-sintered metal frameworks. J. Prosthet. Dent. https://doi.org/10.1016/j.prosdent.2019.12.020.
  • Kaleli, N., Ural, Ç., Küçükekenci, A.S., 2019a. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J. Prosthet. Dent. 122, 76-81.
  • Kaleli, N., Ural, Ç., Özköylü, G., Duran, İ., 2019b. Effect of layer thickness on the marginal and internal adaptation of laser-sintered metal frameworks. J. Prosthet. Dent. 121, 922-928.
  • Kim, E.H., Lee, D.H., Kwon, S.M., Kwon, T.Y., 2017. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J. Prosthet. Dent. 117, 393-399.
  • Koutsoukis, T., Zinelis, S., Eliades, G., Al-Wazzan, K., Rifaiy, M.A., Al Jabbari, Y.S., 2015. Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques. J. Prosthodont. 24, 303-312.
  • Krug, K.P., Knauber, A.W., Nothdurft, F.P., 2015. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy. Clin. Oral. Investig. 19, 401-411.
  • Lambert, H., Durand, J.C., Jacquot, B., Fages, M., 2017. Dental biomaterials for chairside CAD/CAM: State of the art. J. Adv. Prosthodont. 9, 486-495.
  • Lu, Y., Gan, Y., Lin, J., Guo, S., Wu, S., Lin, J., 2017. Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM. Rapid. Prototyp. J. 23, 28-33.
  • Mazzoli, A., 2013. Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput. 51, 245-256.
  • Örtorp, A., Jönsson, D., Mouhsen, A., Von Steyern, P.V., 2011. The fit of cobalt–chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dent. Mater. 27, 356-363.
  • Park, J.K., Kim, H.Y., Kim, W.C., Kim, J.H., 2016. Evaluation of the fit of metal ceramic restorations fabricated with a pre-sintered soft alloy. J. Prosthet. Dent. 116, 909-915.
  • Pasali, B., Sarac, D., Kaleli, N., Sarac, Y.S., 2018. Evaluation of marginal fit of single implant-supported metal-ceramic crowns prepared by using presintered metal blocks. J. Prosthet. Dent. 119, 257-262.
  • Revilla-León, M., Özcan, M., 2017. Additive manufacturing technologies used for 3D metal printing in dentistry. Curr Oral Health Rep. 4, 201-208.
  • Sames, W.J., List, F., Pannala, S., Dehoff, R.R., Babu, S.S., 2016. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315-360.
  • Santos, E.C., Shiomi, M., Osakada, K., Laoui, T., 2006. Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools. Manuf. 46, 1459-1468.
  • Senthilkumaran, K., Pandey, P.M., Rao, P., 2009. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater. Des. 30, 2946-2954.
  • Srivastava, A., Bidra, A.S., 2020. Milled cobalt-chromium metal framework with veneered porcelain for a complete-arch fixed implant-supported prosthesis: A clinical report. J. Prosthet. Dent. 123, 367-372.
  • Stawarczyk, B., Eichberger, M., Hoffmann, R., Noack, F., Schweiger, J., Edelhoff, D., Beuer, F., 2014. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral. Health. Dent. Manag. 13, 446-452.
  • Sun, J., Zhang, F.Q., 2012. The application of rapid prototyping in prosthodontics. J. Prosthodont. 21, 641-644.
  • Tulga, A., 2018. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping. J. Prosthet. Dent. 119, 643-649.
  • Ucar, Y., Ekren, O., 2018. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co-Cr dental alloys. J. Prosthet. Dent. 120, 762-770.
  • Van Noort, R., 2012. The future of dental devices is digital. Dent. Mater. 28, 3-12.
  • Wang, R.J., Wang, L., Zhao, L., Liu, Z., 2007. Influence of process parameters on part shrinkage in SLS. Int. J. Adv. Manuf. Technohol. 33, 498-504.
  • Willer, J., Rossbach, A., Weber, H.-P., 1998. Computer-assisted milling of dental restorations using a new CAD/CAM data acquisition system. J. Prosthet. Dent. 80, 346-353.
  • Zhang, B., Liao, H., Coddet, C., 2012. Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture. Mater. Des 34, 753-758.

Computer-aided dental manufacturing technologies used in fabrication of metal frameworks

Yıl 2021, Cilt: 38 Sayı: 3s, 119 - 122, 09.05.2021

Öz

Metal alloys have been used for many years as framework material of dental restorations. The conventional lost-wax and casting method, which was very popular in fabrication of metal frameworks, are now being replaced by computer-aided manufacturing technologies. Computer-aided manufacturing methods offer many advantages, such as standardization and quality in manufacturing, precise fit of restorations, and improved mechanical strength. Digital technologies used in fabrication of metal frameworks are simply classified as subtractive and additive computer-aided manufacturing systems, and each have their own subdivisions, which show differences in the used technology. This review summarizes computer-aided systems used in fabrication of metal frameworks in terms of use in dental practice, advantages, disadvantages and provides clinical recommendations.

Kaynakça

  • Alghazzawi, T.F., 2016. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 60, 72-84.
  • Ayyıldız, S., Soylu, E.H., İde, S., Kılıç, S., Sipahi, C., Pişkin, B., Gökçe, H.S., 2013. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness. J. Adv. Prosthodont. 5, 471-478.
  • Bosch, G., Ender, A., Mehl, A., 2014. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J. Prosthet. Dent. 112, 1425-1431.
  • Braian, M., Jönsson, D., Kevci, M., Wennerberg, A., 2018. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: A comparative in vitro study. Dent. Mater. 34, 978-993.
  • Ciocca, L., Meneghello, R., Savio, G., Scheda, L., Monaco, C., Gatto, M.R., Micarelli, C., Baldissara, P., 2019. Manufacturing of Metal Frameworks for Full‐Arch Dental Restoration on Implants: A Comparison between Milling and a Novel Hybrid Technology. J. Prosthodont. 28, 556-563.
  • Ekren, O., Ozkomur, A., Ucar, Y., 2018. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J. Prosthet. Dent. 119, 481-487.
  • Gu, D., Shen, Y., 2009. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 30, 2903-2910.
  • Kaleli, N., Saraç, D., 2017a. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J. Prosthet. Dent. 118, 76-82.
  • Kaleli, N., Saraç, D., 2017b. Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods. J. Prosthet. Dent. 117, 656-661.
  • Kaleli, N., Ural, Ç., 2020. Digital evaluation of laser scanning speed effects on the intaglio surface adaptation of laser-sintered metal frameworks. J. Prosthet. Dent. https://doi.org/10.1016/j.prosdent.2019.12.020.
  • Kaleli, N., Ural, Ç., Küçükekenci, A.S., 2019a. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J. Prosthet. Dent. 122, 76-81.
  • Kaleli, N., Ural, Ç., Özköylü, G., Duran, İ., 2019b. Effect of layer thickness on the marginal and internal adaptation of laser-sintered metal frameworks. J. Prosthet. Dent. 121, 922-928.
  • Kim, E.H., Lee, D.H., Kwon, S.M., Kwon, T.Y., 2017. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J. Prosthet. Dent. 117, 393-399.
  • Koutsoukis, T., Zinelis, S., Eliades, G., Al-Wazzan, K., Rifaiy, M.A., Al Jabbari, Y.S., 2015. Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques. J. Prosthodont. 24, 303-312.
  • Krug, K.P., Knauber, A.W., Nothdurft, F.P., 2015. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy. Clin. Oral. Investig. 19, 401-411.
  • Lambert, H., Durand, J.C., Jacquot, B., Fages, M., 2017. Dental biomaterials for chairside CAD/CAM: State of the art. J. Adv. Prosthodont. 9, 486-495.
  • Lu, Y., Gan, Y., Lin, J., Guo, S., Wu, S., Lin, J., 2017. Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM. Rapid. Prototyp. J. 23, 28-33.
  • Mazzoli, A., 2013. Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput. 51, 245-256.
  • Örtorp, A., Jönsson, D., Mouhsen, A., Von Steyern, P.V., 2011. The fit of cobalt–chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dent. Mater. 27, 356-363.
  • Park, J.K., Kim, H.Y., Kim, W.C., Kim, J.H., 2016. Evaluation of the fit of metal ceramic restorations fabricated with a pre-sintered soft alloy. J. Prosthet. Dent. 116, 909-915.
  • Pasali, B., Sarac, D., Kaleli, N., Sarac, Y.S., 2018. Evaluation of marginal fit of single implant-supported metal-ceramic crowns prepared by using presintered metal blocks. J. Prosthet. Dent. 119, 257-262.
  • Revilla-León, M., Özcan, M., 2017. Additive manufacturing technologies used for 3D metal printing in dentistry. Curr Oral Health Rep. 4, 201-208.
  • Sames, W.J., List, F., Pannala, S., Dehoff, R.R., Babu, S.S., 2016. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315-360.
  • Santos, E.C., Shiomi, M., Osakada, K., Laoui, T., 2006. Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools. Manuf. 46, 1459-1468.
  • Senthilkumaran, K., Pandey, P.M., Rao, P., 2009. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater. Des. 30, 2946-2954.
  • Srivastava, A., Bidra, A.S., 2020. Milled cobalt-chromium metal framework with veneered porcelain for a complete-arch fixed implant-supported prosthesis: A clinical report. J. Prosthet. Dent. 123, 367-372.
  • Stawarczyk, B., Eichberger, M., Hoffmann, R., Noack, F., Schweiger, J., Edelhoff, D., Beuer, F., 2014. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral. Health. Dent. Manag. 13, 446-452.
  • Sun, J., Zhang, F.Q., 2012. The application of rapid prototyping in prosthodontics. J. Prosthodont. 21, 641-644.
  • Tulga, A., 2018. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping. J. Prosthet. Dent. 119, 643-649.
  • Ucar, Y., Ekren, O., 2018. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co-Cr dental alloys. J. Prosthet. Dent. 120, 762-770.
  • Van Noort, R., 2012. The future of dental devices is digital. Dent. Mater. 28, 3-12.
  • Wang, R.J., Wang, L., Zhao, L., Liu, Z., 2007. Influence of process parameters on part shrinkage in SLS. Int. J. Adv. Manuf. Technohol. 33, 498-504.
  • Willer, J., Rossbach, A., Weber, H.-P., 1998. Computer-assisted milling of dental restorations using a new CAD/CAM data acquisition system. J. Prosthet. Dent. 80, 346-353.
  • Zhang, B., Liao, H., Coddet, C., 2012. Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture. Mater. Des 34, 753-758.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Clinical Research
Yazarlar

Necati Kaleli

Çağrı Ural

Yurdanur Uçar

Yayımlanma Tarihi 9 Mayıs 2021
Gönderilme Tarihi 22 Mayıs 2020
Kabul Tarihi 3 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 38 Sayı: 3s

Kaynak Göster

APA Kaleli, N., Ural, Ç., & Uçar, Y. (2021). Computer-aided dental manufacturing technologies used in fabrication of metal frameworks. Journal of Experimental and Clinical Medicine, 38(3s), 119-122.
AMA Kaleli N, Ural Ç, Uçar Y. Computer-aided dental manufacturing technologies used in fabrication of metal frameworks. J. Exp. Clin. Med. Mayıs 2021;38(3s):119-122.
Chicago Kaleli, Necati, Çağrı Ural, ve Yurdanur Uçar. “Computer-Aided Dental Manufacturing Technologies Used in Fabrication of Metal Frameworks”. Journal of Experimental and Clinical Medicine 38, sy. 3s (Mayıs 2021): 119-22.
EndNote Kaleli N, Ural Ç, Uçar Y (01 Mayıs 2021) Computer-aided dental manufacturing technologies used in fabrication of metal frameworks. Journal of Experimental and Clinical Medicine 38 3s 119–122.
IEEE N. Kaleli, Ç. Ural, ve Y. Uçar, “Computer-aided dental manufacturing technologies used in fabrication of metal frameworks”, J. Exp. Clin. Med., c. 38, sy. 3s, ss. 119–122, 2021.
ISNAD Kaleli, Necati vd. “Computer-Aided Dental Manufacturing Technologies Used in Fabrication of Metal Frameworks”. Journal of Experimental and Clinical Medicine 38/3s (Mayıs 2021), 119-122.
JAMA Kaleli N, Ural Ç, Uçar Y. Computer-aided dental manufacturing technologies used in fabrication of metal frameworks. J. Exp. Clin. Med. 2021;38:119–122.
MLA Kaleli, Necati vd. “Computer-Aided Dental Manufacturing Technologies Used in Fabrication of Metal Frameworks”. Journal of Experimental and Clinical Medicine, c. 38, sy. 3s, 2021, ss. 119-22.
Vancouver Kaleli N, Ural Ç, Uçar Y. Computer-aided dental manufacturing technologies used in fabrication of metal frameworks. J. Exp. Clin. Med. 2021;38(3s):119-22.