Review
BibTex RIS Cite

Drug repositioning approach to target ‎viral and host cells in the terms of COVID-19 treatment: A review of ‎in vivo experiments and clinical studies

Year 2022, Volume: 39 Issue: 4, 1255 - 1269, 29.10.2022

Abstract

While the COVID-19 pandemic is expanding at an alarming rate, there is currently no treatment ‎option for this disease. Therefore, it is necessary to find an effective treatment special ‎for hospitalized COVID-19 patients at the earliest possible time. One of the promising options which should be investigated is the possible effects of old drugs or ‎drug repositioning. This strategy has less risk with more economical advantages and can be beneficial for the long-term control of this pandemic. Our study aimed to give an overview, update the current status of drugs candidates (both virus-targeting and host-targeting drugs) for repurposing in COVID-19 infection, and assess the possible mechanism of their effect, in vivo antiviral efficacy, and clinical studies

References

  • 1. Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA viruses candidate agents for the next global pandemic? A review. ILAR journal. 2017;58(3):343-58.
  • 2. Duffy S. Why are RNA virus mutation rates so damn high? PLoS biology. 2018;16(8):e3000003.
  • 3. Meganck RM, Baric RS. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nature Medicine. 2021;27(3):401-10.
  • 4. Kin N, Miszczak F, Lin W, Gouilh MA, Vabret A. Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes. Viruses. 2015;7(5):2358-77.
  • 5. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-7.
  • 6. Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt H-R, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England journal of medicine. 2003;348(20):1967-76.
  • 7. Zhong N, Zheng B, Li Y, Poon L, Xie Z, Chan K, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. The Lancet. 2003;362(9393):1353-8.
  • 8. Organization WH. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. http://www who int/csr/sars/country/table2004_04_21/en/index html. 2003.
  • 9. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine. 2012;367(19):1814-20.
  • 10. Situation WM. January 2020. World Health Organization Regional Office for the Eastern Mediterranean. 2020.
  • 11. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.
  • 12. McIntosh K, Hirsch MS, Bloom A. Coronavirus disease 2019 (COVID-19). UpToDate Hirsch MS Bloom. 2020;5(1).
  • 13. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine. 2020.
  • 14. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382(18):1708-20. 15. Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine. 2020;180(7):934-43.
  • 16. Maxmen A. More than 80 clinical trials launch to test coronavirus treatments. Nature. 2020;578(7795):347-9.
  • 17. Mercorelli B, Palù G, Loregian A. Drug repurposing for viral infectious diseases: how far are we? Trends in microbiology. 2018;26(10):865-76.
  • 18. Pillaiyar T, Meenakshisundaram S, Manickam M, Sankaranarayanan M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. European journal of medicinal chemistry. 2020;195:112275.
  • 19. Senger MR, Evangelista TCS, Dantas RF, Santana MVdS, Gonçalves LCS, de Souza Neto LR, et al. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Memórias do Instituto Oswaldo Cruz. 2020;115.
  • 20. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—preliminary report. New England Journal of Medicine. 2020.
  • 21. Consortium WST. Repurposed antiviral drugs for COVID-19—interim WHO SOLIDARITY trial results. New England journal of medicine. 2021;384(6):497-511.
  • 22. Siegel D, Hui HC, Doerffler E, Clarke MO, Chun K, Zhang L, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo [2, 1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. ACS Publications; 2017.
  • 23. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry. 2020;295(15):4773-9.
  • 24. Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry. 2020;295(20):6785-97.
  • 25. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine. 2020;382(24):2327-36.
  • 26. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine. 2020.
  • 27. Nicastri E, Petrosillo N, Ascoli Bartoli T, Lepore L, Mondi A, Palmieri F, et al. National institute for the infectious diseases “L. Spallanzani” IRCCS. Recommendations for COVID-19 clinical management. Infectious disease reports. 2020;12(1):3-9.
  • 28. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The lancet. 2020;395(10236):1569-78.
  • 29. Goldman JD, Lye DC, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. New England Journal of Medicine. 2020;383(19):1827-37.
  • 30. Kaka AS, MacDonald R, Greer N, Vela K, Duan-Porter W, Obley A, et al. Major update: remdesivir for adults with COVID-19: a living systematic review and meta-analysis for the American College of Physicians Practice Points. Annals of internal medicine. 2021;174(5):663-72.
  • 31. Angamo MT, Mohammed MA, Peterson GM. Efficacy and safety of remdesivir in hospitalised COVID-19 patients: a systematic review and meta-analysis. Infection. 2021:1-15.
  • 32. Lai C-C, Chen C-H, Wang C-Y, Chen K-H, Wang Y-H, Hsueh P-R. Clinical efficacy and safety of remdesivir in patients with COVID-19: a systematic review and network meta-analysis of randomized controlled trials. Journal of Antimicrobial Chemotherapy. 2021.
  • 33. Bansal V, Mahapure KS, Bhurwal A, Gupta I, Hassanain S, Makadia J, et al. Mortality benefit of remdesivir in COVID-19: a systematic review and meta-analysis. Frontiers in medicine. 2020;7.
  • 34. Okoli GN, Rabbani R, Copstein L, Al-Juboori A, Askin N, Abou-Setta AM. Remdesivir for coronavirus disease 2019 (COVID-19): a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Infectious Diseases. 2021:1-9.
  • 35. Piscoya A, Ng-Sueng LF, Parra del Riego A, Cerna-Viacava R, Pasupuleti V, Roman YM, et al. Efficacy and harms of remdesivir for the treatment of COVID-19: a systematic review and meta-analysis. PloS one. 2020;15(12):e0243705.
  • 36. Singh S, Khera D, Chugh A, Khera PS, Chugh VK. Efficacy and safety of remdesivir in COVID-19 caused by SARS-CoV-2: a systematic review and meta-analysis. BMJ open. 2021;11(6):e048416.
  • 37. Abdelnabi R, Morais ATSd, Leyssen P, Imbert I, Beaucourt S, Blanc H, et al. Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): key role of the F1 motif of the viral polymerase. Journal of virology. 2017;91(12):e00487-17.
  • 38. Lou Y, Liu L, Yao H, Hu X, Su J, Xu K, et al. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. European Journal of Pharmaceutical Sciences. 2021;157:105631.
  • 39. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020;6(10):1192-8.
  • 40. Udwadia ZF, Singh P, Barkate H, Patil S, Rangwala S, Pendse A, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. International Journal of Infectious Diseases. 2021;103:62-71.
  • 41. Chen C, Huang J, Cheng Z, Wu J, Chen S, Zhang Y, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv. 2020.
  • 42. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther. 14 (2020) 58–60. 2020.
  • 43. Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019‐nCoV infection. Clinical Pharmacology & Therapeutics. 2020;108(2):242-7.
  • 44. Pires de Mello CP, Tao X, Kim TH, Vicchiarelli M, Bulitta JB, Kaushik A, et al. Clinical regimens of favipiravir inhibit Zika virus replication in the hollow-fiber infection model. Antimicrobial agents and chemotherapy. 2018;62(9):e00967-18.
  • 45. Nguyen THT, Guedj J, Anglaret X, Laouénan C, Madelain V, Taburet A-M, et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS neglected tropical diseases. 2017;11(2):e0005389.
  • 46. Khamis F, Al Naabi H, Al Lawati A, Ambusaidi Z, Al Sharji M, Al Barwani U, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. International Journal of Infectious Diseases. 2021;102:538-43.
  • 47. Hassanipour S, Arab-Zozani M, Amani B, Heidarzad F, Fathalipour M, Martinez-de-Hoyo R. The efficacy and safety of Favipiravir in treatment of COVID-19: A systematic review and meta-analysis of clinical trials. Scientific reports. 2021;11(1):1-11.
  • 48. Manabe T, Kambayashi D, Akatsu H, Kudo K. Favipiravir for the treatment of patients with COVID-19: a systematic review and meta-analysis. BMC infectious diseases. 2021;21(1):1-13.
  • 49. Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. Reviews in medical virology. 2006;16(1):37-48.
  • 50. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐19. Journal of medical virology. 2020;92(7):740-6.
  • 51. Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, et al. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 2009;395(2):210-22.
  • 52. Balzarini J, Keyaerts E, Vijgen L, Egberink H, De Clercq E, Van Ranst M, et al. Inhibition of feline (FIPV) and human (SARS) coronavirus by semisynthetic derivatives of glycopeptide antibiotics. Antiviral research. 2006;72(1):20-33.
  • 53. Kim UJ, Won E-J, Kee S-J, Jung S-I, Jang H-C. Case report Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antiviral therapy. 2016;21:455-9.
  • 54. Chan K, Lai S, Chu C, Tsui E, Tam C, Wong M, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong medical journal. 2003.
  • 55. Hung I. Lopinavir/Ritonavir, Ribavirin and IFN-beta Combination for nCoV Treatment (NCT04276688)[Internet]. 2020. 2020.
  • 56. trial C. Clinical trial on regularity of TCM syndrome and differentiation treatment of COVID-19. (CTOROTSADTOC). 2020. https://clinicaltrials.gov/ct2/show/NCT04306497. Accessed March 13, 2020. . 2020.
  • 57. Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet. 2020;395(10238):1695-704.
  • 58. Tong S, Su Y, Yu Y, Wu C, Chen J, Wang S, et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. International journal of antimicrobial agents. 2020;56(3):106114.
  • 59. Bhatia HK, Singh H, Grewal N, Natt NK. Sofosbuvir: a novel treatment option for chronic hepatitis C infection. Journal of pharmacology & pharmacotherapeutics. 2014;5(4):278.
  • 60. Ferreira AC, Reis PA, de Freitas CS, Sacramento CQ, Villas Bôas Hoelz L, Bastos MM, et al. Beyond members of the Flaviviridae family, sofosbuvir also inhibits chikungunya virus replication. Antimicrobial agents and chemotherapy. 2019;63(2):e01389-18.
  • 61. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life sciences. 2020;248:117477.
  • 62. Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, Da Silva AdPD, Dias SdSG, da Silva CdS, et al. The in vitro antiviral activity of the anti-hepatitis C virus (HCV) drugs daclatasvir and sofosbuvir against SARS-CoV-2. BioRxiv. 2020.
  • 63. Eslami G, Mousaviasl S, Radmanesh E, Jelvay S, Bitaraf S, Simmons B, et al. The impact of sofosbuvir/daclatasvir or ribavirin in patients with severe COVID-19. Journal of Antimicrobial Chemotherapy. 2020;75(11):3366-72.
  • 64. Sadeghi A, Ali Asgari A, Norouzi A, Kheiri Z, Anushirvani A, Montazeri M, et al. Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): a randomized controlled trial. Journal of Antimicrobial Chemotherapy. 2020;75(11):3379-85.
  • 65. Sayad B, Sobhani M, Khodarahmi R. Sofosbuvir as repurposed antiviral drug against COVID-19: why were we convinced to evaluate the drug in a registered/approved clinical trial? Archives of medical research. 2020;51(6):577-81.
  • 66. Orkin C, Llibre J, Gallien S, Antinori A, Behrens G, Carr A. Nucleoside reverse transcriptase inhibitor‐reducing strategies in HIV treatment: assessing the evidence. HIV medicine. 2018;19(1):18-32.
  • 67. Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate. Clinical pharmacokinetics. 2004;43(9):595-612.
  • 68. Parienti J-J, Prazuck T, Peyro-Saint-Paul L, Fournier A, Valentin C, Brucato S, et al. Effect of Tenofovir Disoproxil Fumarate and Emtricitabine on nasopharyngeal SARS-CoV-2 viral load burden amongst outpatients with COVID-19: A pilot, randomized, open-label phase 2 trial. EClinicalMedicine. 2021;38:100993.
  • 69. Ayerdi O, Puerta T, Clavo P, Vera M, Ballesteros J, Fuentes ME, et al., editors. Preventive efficacy of tenofovir/emtricitabine against severe acute respiratory syndrome coronavirus 2 among pre-exposure prophylaxis users. Open Forum Infectious Diseases; 2020: Oxford University Press US.
  • 70. Polo R, Hernán M. Randomized clinical trial for the prevention of SARS-CoV-2 infection (COVID-19) in healthcare personnel (EPICOS). ClinicalTrials. gov; 2020. 2020.
  • 71. Ignacio HUS. Daily Regimen of Tenofovir/Emtricitabine as Prevention for COVID-19 in Health Care Personnel in Colombia. ClinicalTrials gov. 2020.
  • 72. TAF/FTC. TAF/FTC for Pre‐exposure Prophylaxis of COVID‐19 in Healthcare Workers (CoviPrep Study). https://ClinicalTrials.gov/show/NCT04405271. Accessed October 12, 2020. 2020.
  • 73. Wang R-R, Yang Q-H, Luo R-H, Peng Y-M, Dai S-X, Zhang X-J, et al. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PloS one. 2014;9(8):e105617.
  • 74. Ren Z, Luo H, Yu Z, Song J, Liang L, Wang L, et al. A Randomized, Open‐Label, Controlled Clinical Trial of Azvudine Tablets in the Treatment of Mild and Common COVID‐19, a Pilot Study. Advanced Science. 2020;7(19):2001435.
  • 75. A. A Clinical Trial for Azvudine in the Treatment of Novel Coronavirus Pneumonia (COVID-19) https://ClinicalTrials.gov/show/NCT04425772. 2020.
  • 76. s. Study on Safety and Clinical Efficacy of AZVUDINE in COVID-19 Patients (SARS-CoV-2 Infected)https://ClinicalTrials.gov/show/NCT04668235. 2020.
  • 77. Chen Y, Yiu C. B, Wong KY. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates [version 1. 2020.
  • 78. Savarino A. Expanding the frontiers of existing antiviral drugs: possible effects of HIV-1 protease inhibitors against SARS and avian influenza. Journal of clinical virology. 2005;34(3):170-8.
  • 79. Liaño JP, Tenorio CH. Chemical characteristics, mechanism of action and antiviral activity of darunavir. Enfermedades infecciosas y microbiologia clinica. 2008;26:3-9.
  • 80. Chen J, Xia L, Liu L, Xu Q, Ling Y, Huang D, et al. Antiviral activity and safety of darunavir/cobicistat for the treatment of COVID-19. Open Forum. Infectious Diseases. 2020.
  • 81. Ledford H. Covid antiviral pills: what scientists still want to know. Nature. 2021;599(7885):358-9.
  • 82. Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. British Medical Journal Publishing Group; 2021.
  • 83. Adedeji AO, Singh K, Kassim A, Coleman CM, Elliott R, Weiss SR, et al. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrobial agents and chemotherapy. 2014;58(8):4894-8.
  • 84. Cvetkovic RS, Goa KL. Lopinavir/ritonavir. Drugs. 2003;63(8):769-802.
  • 85. Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Therapeutics and clinical risk management. 2008;4(5):1023.
  • 86. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. Journal of Korean medical science. 2020;35(6):e79-e.
  • 87. Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of COVID-19: the Zhejiang experience. Journal of Zhejiang University (medical science). 2020;49(2):147-57.
  • 88. Han W, Quan B, Guo Y, Zhang J, Lu Y, Feng G, et al. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. Journal of medical virology. 2020;92(5):461.
  • 89. WHO. “Solidarity” Clinical Trial for COVID-19 Treatments. 2020. 2020.
  • 90. Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. Journal of Infection. 2020;81(1):e21-e3.
  • 91. Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. Journal of Infection. 2020;81(1):e1-e5.
  • 92. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020;30(3):269-71.
  • 93. Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrobial agents and chemotherapy. 2020;64(6):e00754-20.
  • 94. Li K, Meyerholz DK, Bartlett JA, McCray Jr PB. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. Mbio. 2021;12(4):e00970-21.
  • 95. Hospital GNU. Clinical Efficacy of Nafamostat Mesylate for COVID-19 Pneumonia,ClinicalTrials.gov Identifier: NCT04418128,June 5, 2020. 2020.
  • 96. Padova UH. Efficacy of Nafamostat in Covid-19 Patients (RACONA Study) (RACONA),ClinicalTrials.gov Identifier: NCT04352400,April 20, 2020. 2020.
  • 97. Takahashi W, Yoneda T, Koba H, Ueda T, Tsuji N, Ogawa H, et al. Potential mechanisms of nafamostat therapy for severe COVID-19 pneumonia with disseminated intravascular coagulation. International Journal of Infectious Diseases. 2021;102:529-31.
  • 98. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral research. 2020;178:104787.
  • 99. de Melo GD, Lazarini F, Larrous F, Feige L, Kornobis E, Levallois S, et al. Attenuation of clinical and immunological outcomes during SARS‐CoV‐2 infection by ivermectin. EMBO molecular medicine. 2021;13(8):e14122.
  • 100. Patrı A, Fabbrocini G. Hydroxychloroquine and ivermectin: a synergistic combination for COVID-19 chemoprophylaxis and/or treatment. J Am Acad Dermatol. 2020:30557-0.
  • 101. Momekov G, Momekova D. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view: antiviral levels are not likely attainable with known dosing regimens. Biotechnology & biotechnological equipment. 2020;34(1):469-74.
  • 102. A. P. Usefulness of ivermectin in COVID-19 illness. ; 2020 Available at: SSRN 3580524. 2020.
  • 103. University AHS. Ivermectin for Severe COVID-19 Management,ClinicalTrials.gov Identifier: NCT04646109,November 27, 2020. 2020.
  • 104. S.A. LEP. Ivermectin Effect on SARS-CoV-2 Replication in Patients With COVID-19,ClinicalTrials.gov Identifier: NCT04381884,May 11, 2020. 2020.
  • 105. Dentistry FCoMa. ffectiveness of Ivermectin in SARS-CoV-2/COVID-19 Patients,ClinicalTrials.gov Identifier: NCT04739410,February 4, 2021. 2021.
  • 106. Toots M, Yoon J-J, Hart M, Natchus MG, Painter GR, Plemper RK. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Translational Research. 2020;218:16-28.
  • 107. Abdelnabi R, Foo CS, Kaptein SJ, Zhang X, Do TND, Langendries L, et al. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine. 2021;72:103595.
  • 108. Fischer WA, Eron JJ, Holman W, Cohen MS, Fang L, Szewczyk LJ, et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv. 2021.
  • 109. McCoy J, Cadegiani FA, Wambier CG, Herrera S, Vaño-Galván S, Mesinkovska NA, et al. 5-alpha-reductase inhibitors are associated with reduced frequency of COVID-19 symptoms in males with androgenetic alopecia. Journal of the European Academy of Dermatology and Venereology: JEADV. 2020.
  • 110. McCoy J, Goren A, Cadegiani FA, Vaño-Galván S, Kovacevic M, Situm M, et al. Proxalutamide Reduces the Rate of Hospitalization for COVID-19 Male Outpatients: A Randomized Double-Blinded Placebo-Controlled Trial. Frontiers in Medicine. 2021:1043.
  • 111. Qiao Y, Wang X-M, Mannan R, Pitchiaya S, Zhang Y, Wotring JW, et al. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. Proceedings of the National Academy of Sciences. 2021;118(1).
  • 112. Wambier CG, Vaño-Galván S, McCoy J, Pai S, Dhurat R, Goren A. Androgenetic alopecia in COVID-19: compared to age-matched epidemiologic studies and hospital outcomes with or without the Gabrin sign. Journal of the American Academy of Dermatology. 2020;83(6):e453-e4.
  • 113. Ramos PM, Ianhez M, Miot HA. Alopecia and Gray Hair Are Associated with COVID-19 Severity. Experimental dermatology. 2020.
  • 114. Salazar Arenas MÁ, Muñoz Del Carpio-Toia A, Aybar Galdos J, Rodriguez-Morales A. Alopecia and severity of COVID-19: a cross-sectional study in Peru. Le infezioni in medicina. 2021:37-45.
  • 115. Goren A, Wambier CG, Herrera S, McCoy J, Vaño‐Galván S, Gioia F, et al. Anti‐androgens may protect against severe COVID‐19 outcomes: results from a prospective cohort study of 77 hospitalized men. Journal of the European Academy of Dermatology and Venereology. 2020.
  • 116. Cadegiani FA, McCoy J, Wambier CG, Goren A. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and Time-to-Remission in males with COVID-19: a randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCoV trial–biochemical). Cureus. 2021;13(2).
  • 117. Zarehoseinzade E, Allami A, Ahmadi M, Bijani B, Mohammadi N. Finasteride in hospitalized adult males with COVID-19: A risk factor for severity of the disease or an adjunct treatment: A randomized controlled clinical trial. Medical Journal of the Islamic Republic of Iran. 2021;35:30.
  • 118. Cadegiani FA, McCoy J, Wambier CG, Vaño-Galván S, Shapiro J, Tosti A, et al. Proxalutamide significantly accelerates viral clearance and reduces time to clinical remission in patients with mild to moderate COVID-19: Results from a randomized, double-blinded, placebo-controlled trial. Cureus. 2021;13(2).
  • 119. Horby PW, Mafham M, Peto L, Campbell M, Pessoa-Amorim G, Spata E, et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv. 2021.
  • 120. O'Brien M, Neto E, Chen K, Isa F, Heirman I, Sarkar N, et al. Casirivimab with imdevimab antibody cocktail for COVID-19 prevention: Interim results. Topics in Antiviral Medicine. 2021:33-4.
  • 121. Ganesh R, Philpot LM, Bierle DM, Anderson RJ, Arndt LL, Arndt RF, et al. Real-World Clinical Outcomes of Bamlanivimab and Casirivimab-Imdevimab among High-Risk Patients with Mild to Moderate Coronavirus Disease 2019. The Journal of Infectious Diseases. 2021;224(8):1278-86.
  • 122. Razonable RR. Real-World Clinical Outcomes of Bamlanivimab and Casirivimab-Imdevimab among High-Risk Patients with Mild to Moderate Coronavirus Disease 2019. 2021.
  • 123. Falcone M, Tiseo G, Valoriani B, Barbieri C, Occhineri S, Mazzetti P, et al. Efficacy of bamlanivimab/etesevimab and casirivimab/imdevimab in preventing progression to severe covid-19 and role of variants of concern. Infectious diseases and therapy. 2021;10(4):2479-88.
  • 124. Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H. Antivirals for COVID-19: A critical review. Clinical Epidemiology and global health. 2021;9:90-8.
  • 125. Ghosh RK, Ghosh SM, Chawla S. Recent advances in antiretroviral drugs. Expert opinion on pharmacotherapy. 2011;12(1):31-46.
  • 126. Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell discovery. 2020;6(1):1-5.
  • 127. Blaising J, Polyak SJ, Pécheur E-I. Arbidol as a broad-spectrum antiviral: an update. Antiviral research. 2014;107:84-94.
  • 128. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Bioscience trends. 2020.
  • 129. Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Revista Panamericana de Salud Pública. 2020;44:e40.
  • 130. Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). MedRxiv. 2020.
  • 131. Union Hospital TMC, Huazhong University of Science and Technology. Clinical Study of Arbidol Hydrochloride Using for Post-exposure Prophylaxis of 2019-nCoV in High-risk Population Including Medical Staff.ChiCTR; 2020-02-05; TrialID: ChiCTR2000029592 2020.
  • 132. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet. 2020;395(10224):565-74.
  • 133. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England). 2020;395(10223):e30.
  • 134. Bagca BG, Avci CB. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine & growth factor reviews. 2020;54:51-61.
  • 135. Hoang TN, Pino M, Boddapati AK, Viox EG, Starke CE, Upadhyay AA, et al. Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. Cell. 2021;184(2):460-75. e21.
  • 136. Giudice V, Pagliano P, Vatrella A, Masullo A, Poto S, Polverino BM, et al. Combination of ruxolitinib and eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Frontiers in pharmacology. 2020;11:857.
  • 137. Pharmaceuticals N. tudy to Assess the Efficacy and Safety of Ruxolitinib in Patients With COVID-19 Associated Cytokine Storm (RUXCOVID),ClinicalTrials.gov Identifier: NCT04362137,April 24, 2020. 2020.
  • 138. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet infectious diseases. 2003;3(11):722-7.
  • 139. Rosenke K, Jarvis MA, Feldmann F, Schwarz B, Okumura A, Lovaglio J, et al. Hydroxychloroquine proves ineffective in hamsters and macaques infected with SARS-CoV-2. BioRxiv. 2020.
  • 140. Maisonnasse P, Guedj J, Contreras V, Behillil S, Solas C, Marlin R, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020;585(7826):584-7.
  • 141. Lou B, Li T-D, Zheng S-F, Su Y-Y, Li Z-Y, Liu W, et al. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. European Respiratory Journal. 2020;56(2).
  • 142. Park S-J, Yu K-M, Kim Y-I, Kim S-M, Kim E-H, Kim S-G, et al. Antiviral efficacies of FDA-approved drugs against SARS-CoV-2 infection in ferrets. MBio. 2020;11(3):e01114-20.
  • 143. Mitjà O, Clotet B. Use of antiviral drugs to reduce COVID-19 transmission. The Lancet Global Health. 2020;8(5):e639-e40.
  • 144. University T. Efficacay of Chloroquine or Hydroxychloroquine in COVID-19 Treatment,ClinicalTrials.gov Identifier: NCT04353336,ClinicalTrials.gov Identifier: NCT04353336. 2020.
  • 145. Hernandez A. Healthcare Worker Exposure Response and Outcomes of Hydroxychloroquine (HERO-HCQ), ClinicalTrials.gov Identifier: NCT04334148,April 6, 2020. 2020.
  • 146. Celje GaTH. Use of Bromhexine and Hydroxychloroquine for Treatment of COVID-19 Pneumonia,ClinicalTrials.gov Identifier: NCT04355026,April 21, 2020. 2020.
  • 147. Doyno C, Sobieraj DM, Baker WL. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clinical Toxicology. 2021;59(1):12-23.
  • 148. Watson JA, Tarning J, Hoglund RM, Baud FJ, Megarbane B, Clemessy J-L, et al. Concentration-dependent mortality of chloroquine in overdose. Elife. 2020;9:e58631.
  • 149. McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. The American journal of medicine. 1983;75(1):11-8.
  • 150. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020;579(7798):270-3.
  • 151. Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacological Reports. 2020:1-30.
  • 152. Aghdashi M, Aghdashi M, Rabiepoor M. Osteopoikilosis: pain as a presenting symptom in three family members. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders. 2011;4:CMAMD. S7035.
  • 153. Xie Y, You Q, Wu C, Cao S, Qu G, Yan X, et al. Impact of cardiovascular disease on clinical characteristics and outcomes of coronavirus disease 2019 (COVID-19). Circulation Journal. 2020:CJ-20-0348.
  • 154. Meng J, Xiao G, Zhang J, He X, Ou M, Bi J, et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerging microbes & infections. 2020;9(1):757-60.
  • 155. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology. 2020;94(7):e00127-20.
  • 156. Oliver ME, Hinks TS. Azithromycin in viral infections. Reviews in medical virology. 2021;31(2):e2163.
  • 157. Venditto VJ, Haydar D, Abdel-Latif A, Gensel J, Anstead MI, Pitts MG, et al. Immunomodulatory effects of azithromycin revisited: potential applications to COVID-19. Frontiers in Immunology. 2021;12:285.
  • 158. Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. New England Journal of Medicine. 2020;383(6):517-25.
  • 159. Abaleke E, Abbas M, Abbasi S, Abbott A, Abdelaziz A, Abdelbadiee S, et al. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. The Lancet. 2021;397(10274):605-12.
  • 160. Butler CC, Dorward J, Yu L-M, Gbinigie O, Hayward G, Saville BR, et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. The Lancet. 2021;397(10279):1063-74.
  • 161. University SV. Clarithromycin Versus Azithromycin in Treatment of Mild COVID-19 Infection,ClinicalTrials.gov Identifier: NCT04622891,November 10, 2020. 2020.
  • 162. Corporation HM. Hydroxychloroquine With or Without Azithromycin for Virologic Cure of COVID-19,ClinicalTrials.gov Identifier: NCT04349592,April 16, 2020. 2020.
  • 163. Gautret P, Lagier J-C, Parola P, Meddeb L, Mailhe M, Doudier B, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents. 2020;56(1):105949.
  • 164. Bersanelli M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Future Medicine; 2020.
  • 165. Sheppard M, Laskou F, Stapleton PP, Hadavi S, Dasgupta B. Tocilizumab (actemra). Human vaccines & immunotherapeutics. 2017;13(9):1972-88.
  • 166. Zhang X, Song K, Tong F, Fei M, Guo H, Lu Z, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood advances. 2020;4(7):1307.
  • 167. Khiali S, Khani E, Entezari‐Maleki T. A comprehensive review of tocilizumab in covid‐19 acute respiratory distress syndrome. The Journal of Clinical Pharmacology. 2020;60(9):1131-46.
  • 168. Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: preliminary results from a multi-centre, randomized, controlled trial. MedRxiv. 2020.
  • 169. Theoharides T, Conti P. Dexamethasone for COVID-19? Not so fast. J Biol Regul Homeost Agents. 2020;34(3):1241-3.
  • 170. Group TRC. Dexamethasone in hospitalized patients with Covid-19—preliminary report. The New England journal of medicine. 2020.
  • 171. Ranjbar K, Moghadami M, Mirahmadizadeh A, Fallahi MJ, Khaloo V, Shahriarirad R, et al. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. BMC infectious diseases. 2021;21(1):1-8.
  • 172. Li J, Lehmann C, Chen X, Romerio F, Lu W. Total chemical synthesis of human interferon alpha‐2b via native chemical ligation. Journal of peptide science. 2015;21(7):554-60.
  • 173. Thomas H, Foster G, Platis D. Mechanisms of action of interferon and nucleoside analogues. Journal of hepatology. 2003;39:93-8.
  • 174. Wang H-Q, Ma L-L, Jiang J-D, Pang R, Chen Y-J, Li Y-H. Recombinant human interferon alpha 2b broad-spectrum anti-respiratory viruses pharmacodynamics study in vitro. Yao xue xue bao= Acta pharmaceutica Sinica. 2014;49(11):1547-53.
  • 175. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends. 2020;14(1):69-71.
  • 176. Darazam IA, Shokouhi S, Pourhoseingholi MA, Irvani SSN, Mokhtari M, Shabani M, et al. Role of interferon therapy in severe COVID-19: the COVIFERON randomized controlled trial. Scientific reports. 2021;11(1):1-11.
  • 177. Phadke M, Saunik S. COVID‐19 treatment by repurposing drugs until the vaccine is in sight. Drug development research. 2020;81(5):541-3.
  • 178. Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M, Malek V, et al. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochemical pharmacology. 2015;93(3):343-51.
  • 179. Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Annals of translational medicine. 2016;4(21).
  • 180. Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection. European Heart Journal-Cardiovascular Pharmacotherapy. 2020;6(4):258-9.
  • 181. Lee KCH, Sewa DW, Phua GC. Potential role of statins in COVID-19. International Journal of Infectious Diseases. 2020;96:615-7.
  • 182. Subir R. Pros and cons for use of statins in people with coronavirus disease-19 (COVID-19). Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(5):1225-9.
  • 183. Zhang X-J, Qin J-J, Cheng X, Shen L, Zhao Y-C, Yuan Y, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell metabolism. 2020;32(2):176-87. e4.
  • 184. Vahedian-Azimi A, Mohammadi SM, Beni FH, Banach M, Guest PC, Jamialahmadi T, et al. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Archives of Medical Science: AMS. 2021;17(3):579.
  • 185. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences. 2020;117(12):6771-6.
  • 186. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science translational medicine. 2017;9(396).
  • 187. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B. 2017;93(7):449-63.
  • 188. Driouich J-S, Cochin M, Lingas G, Moureau G, Touret F, Petit PR, et al. Favipiravir and severe acute respiratory syndrome coronavirus 2 in hamster model. bioRxiv. 2020.
  • 189. Arévalo A, Pagotto R, Pórfido J, Daghero H, Segovia M, Yamasaki K, et al. Ivermectin reduces in vivo coronavirus infection in a mouse experimental model. Scientific Reports. 2021;11(1):1-12.
  • 190. De Meyer S, Bojkova D, Cinatl J, Van Damme E, Buyck C, Van Loock M, et al. Lack of antiviral activity of darunavir against SARS-CoV-2. International Journal of Infectious Diseases. 2020;97:7-10.
  • 191. Choy K-T, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral research. 2020;178:104786.
  • 192. Zhao H, To KK, Lam H, Zhou X, Chan JF-W, Peng Z, et al. Cross-linking peptide and repurposed drugs inhibit both entry pathways of SARS-CoV-2. Nature communications. 2021;12(1):1-9.
  • 193. Leneva I, Pshenichnaya N, Bulgakova V. Umifenovir and coronavirus infections: a review of research results and clinical practice. Terapevticheskii arkhiv. 2020;92(11):91-7.
  • 194. Li H, Liu R, Zhang R, Zhang S, Wei Y, Zhou H, et al. Protective effect of arbidol against pulmonary fibrosis and sepsis in mice. Frontiers in Pharmacology. 2020;11:2504. 195. NIAID. Adaptive COVID-19 Treatment Trial 4 (ACTT-4),ClinicalTrials.gov Identifier: NCT04640168,November 23, 2020. 2020.
  • 196. Hospital MARMCa. Efficacy of Ramdicivir and Baricitinib for the Treatment of Severe COVID 19 Patients,ClinicalTrials.gov Identifier: NCT04693026,January 5, 2021. 2021.
  • 197. Cantini F. Baricitinib Therapy in COVID-19,ClinicalTrials.gov Identifier: NCT04358614,April 24, 2020. 2020.
  • 198. Malignas GCdH. Treatment of SARS Caused by COVID-19 With Ruxolitinib,ClinicalTrials.gov Identifier: NCT04334044,April 3, 2020. 2020.
  • 199. Jena Uo. Ruxolitinib in Covid-19 Patients With Defined Hyperinflammation (RuxCoFlam),ClinicalTrials.gov Identifier: NCT04338958, April 8, 2020. 2020.
  • 200. University WM. Chloroquine as Antiviral Treatment in Coronavirus Infection 2020, ClinicalTrials.gov Identifier: NCT04331600,April 2, 2020. 2020.
  • 201. Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. BioRxiv. 2020.
  • 202. SEIMC-GESIDA F. Clinical Trial to Evaluate the Effectiveness and Safety of Tocilizumab for Treating Patients With COVID-19 Pneumonia,ClinicalTrials.gov Identifier: NCT04445272,June 24, 2020. 2020.
  • 203. Dentistry FCoMa. TOCILIZUMAB - An Option for Patients With COVID-19 Associated Cytokine Release Syndrome; A Single Center Experience,ClinicalTrials.gov Identifier: NCT04730323,January 29, 2021. 2021.
  • 204. Chicago Uo. Low-dose Tocilizumab Versus Standard of Care in Hospitalized Patients With COVID-19 (COVIDOSE-2,ClinicalTrials.gov Identifier: NCT04479358,July 21, 2020. 2020.
  • 205. Chicago Uo. Tocilizumab to Prevent Clinical Decompensation in Hospitalized, Non-critically Ill Patients With COVID-19 Pneumonitis (COVIDOSE,ClinicalTrials.gov Identifier: NCT04331795,April 2, 2020. 2020.
  • 206. Hosseinzadeh MH, Shamshirian A, Ebrahimzadeh MA. Dexamethasone vs COVID‐19: An experimental study in line with the preliminary findings of a large trial. International Journal of Clinical Practice. 2021;75(6):e13943.
  • 207. Institute RPC. Rintatolimod and IFN Alpha-2b for the Treatment of COVID-19 in Cancer Patients, ClinicalTrials.gov Identifier: NCT04379518,May 7, 2020. 2020.
Year 2022, Volume: 39 Issue: 4, 1255 - 1269, 29.10.2022

Abstract

References

  • 1. Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA viruses candidate agents for the next global pandemic? A review. ILAR journal. 2017;58(3):343-58.
  • 2. Duffy S. Why are RNA virus mutation rates so damn high? PLoS biology. 2018;16(8):e3000003.
  • 3. Meganck RM, Baric RS. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nature Medicine. 2021;27(3):401-10.
  • 4. Kin N, Miszczak F, Lin W, Gouilh MA, Vabret A. Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes. Viruses. 2015;7(5):2358-77.
  • 5. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-7.
  • 6. Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt H-R, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England journal of medicine. 2003;348(20):1967-76.
  • 7. Zhong N, Zheng B, Li Y, Poon L, Xie Z, Chan K, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. The Lancet. 2003;362(9393):1353-8.
  • 8. Organization WH. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. http://www who int/csr/sars/country/table2004_04_21/en/index html. 2003.
  • 9. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine. 2012;367(19):1814-20.
  • 10. Situation WM. January 2020. World Health Organization Regional Office for the Eastern Mediterranean. 2020.
  • 11. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.
  • 12. McIntosh K, Hirsch MS, Bloom A. Coronavirus disease 2019 (COVID-19). UpToDate Hirsch MS Bloom. 2020;5(1).
  • 13. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine. 2020.
  • 14. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382(18):1708-20. 15. Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine. 2020;180(7):934-43.
  • 16. Maxmen A. More than 80 clinical trials launch to test coronavirus treatments. Nature. 2020;578(7795):347-9.
  • 17. Mercorelli B, Palù G, Loregian A. Drug repurposing for viral infectious diseases: how far are we? Trends in microbiology. 2018;26(10):865-76.
  • 18. Pillaiyar T, Meenakshisundaram S, Manickam M, Sankaranarayanan M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. European journal of medicinal chemistry. 2020;195:112275.
  • 19. Senger MR, Evangelista TCS, Dantas RF, Santana MVdS, Gonçalves LCS, de Souza Neto LR, et al. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Memórias do Instituto Oswaldo Cruz. 2020;115.
  • 20. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—preliminary report. New England Journal of Medicine. 2020.
  • 21. Consortium WST. Repurposed antiviral drugs for COVID-19—interim WHO SOLIDARITY trial results. New England journal of medicine. 2021;384(6):497-511.
  • 22. Siegel D, Hui HC, Doerffler E, Clarke MO, Chun K, Zhang L, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo [2, 1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. ACS Publications; 2017.
  • 23. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry. 2020;295(15):4773-9.
  • 24. Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry. 2020;295(20):6785-97.
  • 25. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine. 2020;382(24):2327-36.
  • 26. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine. 2020.
  • 27. Nicastri E, Petrosillo N, Ascoli Bartoli T, Lepore L, Mondi A, Palmieri F, et al. National institute for the infectious diseases “L. Spallanzani” IRCCS. Recommendations for COVID-19 clinical management. Infectious disease reports. 2020;12(1):3-9.
  • 28. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The lancet. 2020;395(10236):1569-78.
  • 29. Goldman JD, Lye DC, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. New England Journal of Medicine. 2020;383(19):1827-37.
  • 30. Kaka AS, MacDonald R, Greer N, Vela K, Duan-Porter W, Obley A, et al. Major update: remdesivir for adults with COVID-19: a living systematic review and meta-analysis for the American College of Physicians Practice Points. Annals of internal medicine. 2021;174(5):663-72.
  • 31. Angamo MT, Mohammed MA, Peterson GM. Efficacy and safety of remdesivir in hospitalised COVID-19 patients: a systematic review and meta-analysis. Infection. 2021:1-15.
  • 32. Lai C-C, Chen C-H, Wang C-Y, Chen K-H, Wang Y-H, Hsueh P-R. Clinical efficacy and safety of remdesivir in patients with COVID-19: a systematic review and network meta-analysis of randomized controlled trials. Journal of Antimicrobial Chemotherapy. 2021.
  • 33. Bansal V, Mahapure KS, Bhurwal A, Gupta I, Hassanain S, Makadia J, et al. Mortality benefit of remdesivir in COVID-19: a systematic review and meta-analysis. Frontiers in medicine. 2020;7.
  • 34. Okoli GN, Rabbani R, Copstein L, Al-Juboori A, Askin N, Abou-Setta AM. Remdesivir for coronavirus disease 2019 (COVID-19): a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Infectious Diseases. 2021:1-9.
  • 35. Piscoya A, Ng-Sueng LF, Parra del Riego A, Cerna-Viacava R, Pasupuleti V, Roman YM, et al. Efficacy and harms of remdesivir for the treatment of COVID-19: a systematic review and meta-analysis. PloS one. 2020;15(12):e0243705.
  • 36. Singh S, Khera D, Chugh A, Khera PS, Chugh VK. Efficacy and safety of remdesivir in COVID-19 caused by SARS-CoV-2: a systematic review and meta-analysis. BMJ open. 2021;11(6):e048416.
  • 37. Abdelnabi R, Morais ATSd, Leyssen P, Imbert I, Beaucourt S, Blanc H, et al. Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): key role of the F1 motif of the viral polymerase. Journal of virology. 2017;91(12):e00487-17.
  • 38. Lou Y, Liu L, Yao H, Hu X, Su J, Xu K, et al. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. European Journal of Pharmaceutical Sciences. 2021;157:105631.
  • 39. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020;6(10):1192-8.
  • 40. Udwadia ZF, Singh P, Barkate H, Patil S, Rangwala S, Pendse A, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. International Journal of Infectious Diseases. 2021;103:62-71.
  • 41. Chen C, Huang J, Cheng Z, Wu J, Chen S, Zhang Y, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv. 2020.
  • 42. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther. 14 (2020) 58–60. 2020.
  • 43. Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019‐nCoV infection. Clinical Pharmacology & Therapeutics. 2020;108(2):242-7.
  • 44. Pires de Mello CP, Tao X, Kim TH, Vicchiarelli M, Bulitta JB, Kaushik A, et al. Clinical regimens of favipiravir inhibit Zika virus replication in the hollow-fiber infection model. Antimicrobial agents and chemotherapy. 2018;62(9):e00967-18.
  • 45. Nguyen THT, Guedj J, Anglaret X, Laouénan C, Madelain V, Taburet A-M, et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS neglected tropical diseases. 2017;11(2):e0005389.
  • 46. Khamis F, Al Naabi H, Al Lawati A, Ambusaidi Z, Al Sharji M, Al Barwani U, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. International Journal of Infectious Diseases. 2021;102:538-43.
  • 47. Hassanipour S, Arab-Zozani M, Amani B, Heidarzad F, Fathalipour M, Martinez-de-Hoyo R. The efficacy and safety of Favipiravir in treatment of COVID-19: A systematic review and meta-analysis of clinical trials. Scientific reports. 2021;11(1):1-11.
  • 48. Manabe T, Kambayashi D, Akatsu H, Kudo K. Favipiravir for the treatment of patients with COVID-19: a systematic review and meta-analysis. BMC infectious diseases. 2021;21(1):1-13.
  • 49. Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. Reviews in medical virology. 2006;16(1):37-48.
  • 50. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐19. Journal of medical virology. 2020;92(7):740-6.
  • 51. Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, et al. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 2009;395(2):210-22.
  • 52. Balzarini J, Keyaerts E, Vijgen L, Egberink H, De Clercq E, Van Ranst M, et al. Inhibition of feline (FIPV) and human (SARS) coronavirus by semisynthetic derivatives of glycopeptide antibiotics. Antiviral research. 2006;72(1):20-33.
  • 53. Kim UJ, Won E-J, Kee S-J, Jung S-I, Jang H-C. Case report Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antiviral therapy. 2016;21:455-9.
  • 54. Chan K, Lai S, Chu C, Tsui E, Tam C, Wong M, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong medical journal. 2003.
  • 55. Hung I. Lopinavir/Ritonavir, Ribavirin and IFN-beta Combination for nCoV Treatment (NCT04276688)[Internet]. 2020. 2020.
  • 56. trial C. Clinical trial on regularity of TCM syndrome and differentiation treatment of COVID-19. (CTOROTSADTOC). 2020. https://clinicaltrials.gov/ct2/show/NCT04306497. Accessed March 13, 2020. . 2020.
  • 57. Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet. 2020;395(10238):1695-704.
  • 58. Tong S, Su Y, Yu Y, Wu C, Chen J, Wang S, et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. International journal of antimicrobial agents. 2020;56(3):106114.
  • 59. Bhatia HK, Singh H, Grewal N, Natt NK. Sofosbuvir: a novel treatment option for chronic hepatitis C infection. Journal of pharmacology & pharmacotherapeutics. 2014;5(4):278.
  • 60. Ferreira AC, Reis PA, de Freitas CS, Sacramento CQ, Villas Bôas Hoelz L, Bastos MM, et al. Beyond members of the Flaviviridae family, sofosbuvir also inhibits chikungunya virus replication. Antimicrobial agents and chemotherapy. 2019;63(2):e01389-18.
  • 61. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life sciences. 2020;248:117477.
  • 62. Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, Da Silva AdPD, Dias SdSG, da Silva CdS, et al. The in vitro antiviral activity of the anti-hepatitis C virus (HCV) drugs daclatasvir and sofosbuvir against SARS-CoV-2. BioRxiv. 2020.
  • 63. Eslami G, Mousaviasl S, Radmanesh E, Jelvay S, Bitaraf S, Simmons B, et al. The impact of sofosbuvir/daclatasvir or ribavirin in patients with severe COVID-19. Journal of Antimicrobial Chemotherapy. 2020;75(11):3366-72.
  • 64. Sadeghi A, Ali Asgari A, Norouzi A, Kheiri Z, Anushirvani A, Montazeri M, et al. Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): a randomized controlled trial. Journal of Antimicrobial Chemotherapy. 2020;75(11):3379-85.
  • 65. Sayad B, Sobhani M, Khodarahmi R. Sofosbuvir as repurposed antiviral drug against COVID-19: why were we convinced to evaluate the drug in a registered/approved clinical trial? Archives of medical research. 2020;51(6):577-81.
  • 66. Orkin C, Llibre J, Gallien S, Antinori A, Behrens G, Carr A. Nucleoside reverse transcriptase inhibitor‐reducing strategies in HIV treatment: assessing the evidence. HIV medicine. 2018;19(1):18-32.
  • 67. Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate. Clinical pharmacokinetics. 2004;43(9):595-612.
  • 68. Parienti J-J, Prazuck T, Peyro-Saint-Paul L, Fournier A, Valentin C, Brucato S, et al. Effect of Tenofovir Disoproxil Fumarate and Emtricitabine on nasopharyngeal SARS-CoV-2 viral load burden amongst outpatients with COVID-19: A pilot, randomized, open-label phase 2 trial. EClinicalMedicine. 2021;38:100993.
  • 69. Ayerdi O, Puerta T, Clavo P, Vera M, Ballesteros J, Fuentes ME, et al., editors. Preventive efficacy of tenofovir/emtricitabine against severe acute respiratory syndrome coronavirus 2 among pre-exposure prophylaxis users. Open Forum Infectious Diseases; 2020: Oxford University Press US.
  • 70. Polo R, Hernán M. Randomized clinical trial for the prevention of SARS-CoV-2 infection (COVID-19) in healthcare personnel (EPICOS). ClinicalTrials. gov; 2020. 2020.
  • 71. Ignacio HUS. Daily Regimen of Tenofovir/Emtricitabine as Prevention for COVID-19 in Health Care Personnel in Colombia. ClinicalTrials gov. 2020.
  • 72. TAF/FTC. TAF/FTC for Pre‐exposure Prophylaxis of COVID‐19 in Healthcare Workers (CoviPrep Study). https://ClinicalTrials.gov/show/NCT04405271. Accessed October 12, 2020. 2020.
  • 73. Wang R-R, Yang Q-H, Luo R-H, Peng Y-M, Dai S-X, Zhang X-J, et al. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PloS one. 2014;9(8):e105617.
  • 74. Ren Z, Luo H, Yu Z, Song J, Liang L, Wang L, et al. A Randomized, Open‐Label, Controlled Clinical Trial of Azvudine Tablets in the Treatment of Mild and Common COVID‐19, a Pilot Study. Advanced Science. 2020;7(19):2001435.
  • 75. A. A Clinical Trial for Azvudine in the Treatment of Novel Coronavirus Pneumonia (COVID-19) https://ClinicalTrials.gov/show/NCT04425772. 2020.
  • 76. s. Study on Safety and Clinical Efficacy of AZVUDINE in COVID-19 Patients (SARS-CoV-2 Infected)https://ClinicalTrials.gov/show/NCT04668235. 2020.
  • 77. Chen Y, Yiu C. B, Wong KY. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates [version 1. 2020.
  • 78. Savarino A. Expanding the frontiers of existing antiviral drugs: possible effects of HIV-1 protease inhibitors against SARS and avian influenza. Journal of clinical virology. 2005;34(3):170-8.
  • 79. Liaño JP, Tenorio CH. Chemical characteristics, mechanism of action and antiviral activity of darunavir. Enfermedades infecciosas y microbiologia clinica. 2008;26:3-9.
  • 80. Chen J, Xia L, Liu L, Xu Q, Ling Y, Huang D, et al. Antiviral activity and safety of darunavir/cobicistat for the treatment of COVID-19. Open Forum. Infectious Diseases. 2020.
  • 81. Ledford H. Covid antiviral pills: what scientists still want to know. Nature. 2021;599(7885):358-9.
  • 82. Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. British Medical Journal Publishing Group; 2021.
  • 83. Adedeji AO, Singh K, Kassim A, Coleman CM, Elliott R, Weiss SR, et al. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrobial agents and chemotherapy. 2014;58(8):4894-8.
  • 84. Cvetkovic RS, Goa KL. Lopinavir/ritonavir. Drugs. 2003;63(8):769-802.
  • 85. Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Therapeutics and clinical risk management. 2008;4(5):1023.
  • 86. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. Journal of Korean medical science. 2020;35(6):e79-e.
  • 87. Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of COVID-19: the Zhejiang experience. Journal of Zhejiang University (medical science). 2020;49(2):147-57.
  • 88. Han W, Quan B, Guo Y, Zhang J, Lu Y, Feng G, et al. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. Journal of medical virology. 2020;92(5):461.
  • 89. WHO. “Solidarity” Clinical Trial for COVID-19 Treatments. 2020. 2020.
  • 90. Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. Journal of Infection. 2020;81(1):e21-e3.
  • 91. Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. Journal of Infection. 2020;81(1):e1-e5.
  • 92. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020;30(3):269-71.
  • 93. Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrobial agents and chemotherapy. 2020;64(6):e00754-20.
  • 94. Li K, Meyerholz DK, Bartlett JA, McCray Jr PB. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. Mbio. 2021;12(4):e00970-21.
  • 95. Hospital GNU. Clinical Efficacy of Nafamostat Mesylate for COVID-19 Pneumonia,ClinicalTrials.gov Identifier: NCT04418128,June 5, 2020. 2020.
  • 96. Padova UH. Efficacy of Nafamostat in Covid-19 Patients (RACONA Study) (RACONA),ClinicalTrials.gov Identifier: NCT04352400,April 20, 2020. 2020.
  • 97. Takahashi W, Yoneda T, Koba H, Ueda T, Tsuji N, Ogawa H, et al. Potential mechanisms of nafamostat therapy for severe COVID-19 pneumonia with disseminated intravascular coagulation. International Journal of Infectious Diseases. 2021;102:529-31.
  • 98. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral research. 2020;178:104787.
  • 99. de Melo GD, Lazarini F, Larrous F, Feige L, Kornobis E, Levallois S, et al. Attenuation of clinical and immunological outcomes during SARS‐CoV‐2 infection by ivermectin. EMBO molecular medicine. 2021;13(8):e14122.
  • 100. Patrı A, Fabbrocini G. Hydroxychloroquine and ivermectin: a synergistic combination for COVID-19 chemoprophylaxis and/or treatment. J Am Acad Dermatol. 2020:30557-0.
  • 101. Momekov G, Momekova D. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view: antiviral levels are not likely attainable with known dosing regimens. Biotechnology & biotechnological equipment. 2020;34(1):469-74.
  • 102. A. P. Usefulness of ivermectin in COVID-19 illness. ; 2020 Available at: SSRN 3580524. 2020.
  • 103. University AHS. Ivermectin for Severe COVID-19 Management,ClinicalTrials.gov Identifier: NCT04646109,November 27, 2020. 2020.
  • 104. S.A. LEP. Ivermectin Effect on SARS-CoV-2 Replication in Patients With COVID-19,ClinicalTrials.gov Identifier: NCT04381884,May 11, 2020. 2020.
  • 105. Dentistry FCoMa. ffectiveness of Ivermectin in SARS-CoV-2/COVID-19 Patients,ClinicalTrials.gov Identifier: NCT04739410,February 4, 2021. 2021.
  • 106. Toots M, Yoon J-J, Hart M, Natchus MG, Painter GR, Plemper RK. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Translational Research. 2020;218:16-28.
  • 107. Abdelnabi R, Foo CS, Kaptein SJ, Zhang X, Do TND, Langendries L, et al. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine. 2021;72:103595.
  • 108. Fischer WA, Eron JJ, Holman W, Cohen MS, Fang L, Szewczyk LJ, et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv. 2021.
  • 109. McCoy J, Cadegiani FA, Wambier CG, Herrera S, Vaño-Galván S, Mesinkovska NA, et al. 5-alpha-reductase inhibitors are associated with reduced frequency of COVID-19 symptoms in males with androgenetic alopecia. Journal of the European Academy of Dermatology and Venereology: JEADV. 2020.
  • 110. McCoy J, Goren A, Cadegiani FA, Vaño-Galván S, Kovacevic M, Situm M, et al. Proxalutamide Reduces the Rate of Hospitalization for COVID-19 Male Outpatients: A Randomized Double-Blinded Placebo-Controlled Trial. Frontiers in Medicine. 2021:1043.
  • 111. Qiao Y, Wang X-M, Mannan R, Pitchiaya S, Zhang Y, Wotring JW, et al. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. Proceedings of the National Academy of Sciences. 2021;118(1).
  • 112. Wambier CG, Vaño-Galván S, McCoy J, Pai S, Dhurat R, Goren A. Androgenetic alopecia in COVID-19: compared to age-matched epidemiologic studies and hospital outcomes with or without the Gabrin sign. Journal of the American Academy of Dermatology. 2020;83(6):e453-e4.
  • 113. Ramos PM, Ianhez M, Miot HA. Alopecia and Gray Hair Are Associated with COVID-19 Severity. Experimental dermatology. 2020.
  • 114. Salazar Arenas MÁ, Muñoz Del Carpio-Toia A, Aybar Galdos J, Rodriguez-Morales A. Alopecia and severity of COVID-19: a cross-sectional study in Peru. Le infezioni in medicina. 2021:37-45.
  • 115. Goren A, Wambier CG, Herrera S, McCoy J, Vaño‐Galván S, Gioia F, et al. Anti‐androgens may protect against severe COVID‐19 outcomes: results from a prospective cohort study of 77 hospitalized men. Journal of the European Academy of Dermatology and Venereology. 2020.
  • 116. Cadegiani FA, McCoy J, Wambier CG, Goren A. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and Time-to-Remission in males with COVID-19: a randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCoV trial–biochemical). Cureus. 2021;13(2).
  • 117. Zarehoseinzade E, Allami A, Ahmadi M, Bijani B, Mohammadi N. Finasteride in hospitalized adult males with COVID-19: A risk factor for severity of the disease or an adjunct treatment: A randomized controlled clinical trial. Medical Journal of the Islamic Republic of Iran. 2021;35:30.
  • 118. Cadegiani FA, McCoy J, Wambier CG, Vaño-Galván S, Shapiro J, Tosti A, et al. Proxalutamide significantly accelerates viral clearance and reduces time to clinical remission in patients with mild to moderate COVID-19: Results from a randomized, double-blinded, placebo-controlled trial. Cureus. 2021;13(2).
  • 119. Horby PW, Mafham M, Peto L, Campbell M, Pessoa-Amorim G, Spata E, et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv. 2021.
  • 120. O'Brien M, Neto E, Chen K, Isa F, Heirman I, Sarkar N, et al. Casirivimab with imdevimab antibody cocktail for COVID-19 prevention: Interim results. Topics in Antiviral Medicine. 2021:33-4.
  • 121. Ganesh R, Philpot LM, Bierle DM, Anderson RJ, Arndt LL, Arndt RF, et al. Real-World Clinical Outcomes of Bamlanivimab and Casirivimab-Imdevimab among High-Risk Patients with Mild to Moderate Coronavirus Disease 2019. The Journal of Infectious Diseases. 2021;224(8):1278-86.
  • 122. Razonable RR. Real-World Clinical Outcomes of Bamlanivimab and Casirivimab-Imdevimab among High-Risk Patients with Mild to Moderate Coronavirus Disease 2019. 2021.
  • 123. Falcone M, Tiseo G, Valoriani B, Barbieri C, Occhineri S, Mazzetti P, et al. Efficacy of bamlanivimab/etesevimab and casirivimab/imdevimab in preventing progression to severe covid-19 and role of variants of concern. Infectious diseases and therapy. 2021;10(4):2479-88.
  • 124. Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H. Antivirals for COVID-19: A critical review. Clinical Epidemiology and global health. 2021;9:90-8.
  • 125. Ghosh RK, Ghosh SM, Chawla S. Recent advances in antiretroviral drugs. Expert opinion on pharmacotherapy. 2011;12(1):31-46.
  • 126. Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell discovery. 2020;6(1):1-5.
  • 127. Blaising J, Polyak SJ, Pécheur E-I. Arbidol as a broad-spectrum antiviral: an update. Antiviral research. 2014;107:84-94.
  • 128. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Bioscience trends. 2020.
  • 129. Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Revista Panamericana de Salud Pública. 2020;44:e40.
  • 130. Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). MedRxiv. 2020.
  • 131. Union Hospital TMC, Huazhong University of Science and Technology. Clinical Study of Arbidol Hydrochloride Using for Post-exposure Prophylaxis of 2019-nCoV in High-risk Population Including Medical Staff.ChiCTR; 2020-02-05; TrialID: ChiCTR2000029592 2020.
  • 132. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet. 2020;395(10224):565-74.
  • 133. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England). 2020;395(10223):e30.
  • 134. Bagca BG, Avci CB. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine & growth factor reviews. 2020;54:51-61.
  • 135. Hoang TN, Pino M, Boddapati AK, Viox EG, Starke CE, Upadhyay AA, et al. Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. Cell. 2021;184(2):460-75. e21.
  • 136. Giudice V, Pagliano P, Vatrella A, Masullo A, Poto S, Polverino BM, et al. Combination of ruxolitinib and eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Frontiers in pharmacology. 2020;11:857.
  • 137. Pharmaceuticals N. tudy to Assess the Efficacy and Safety of Ruxolitinib in Patients With COVID-19 Associated Cytokine Storm (RUXCOVID),ClinicalTrials.gov Identifier: NCT04362137,April 24, 2020. 2020.
  • 138. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet infectious diseases. 2003;3(11):722-7.
  • 139. Rosenke K, Jarvis MA, Feldmann F, Schwarz B, Okumura A, Lovaglio J, et al. Hydroxychloroquine proves ineffective in hamsters and macaques infected with SARS-CoV-2. BioRxiv. 2020.
  • 140. Maisonnasse P, Guedj J, Contreras V, Behillil S, Solas C, Marlin R, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020;585(7826):584-7.
  • 141. Lou B, Li T-D, Zheng S-F, Su Y-Y, Li Z-Y, Liu W, et al. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. European Respiratory Journal. 2020;56(2).
  • 142. Park S-J, Yu K-M, Kim Y-I, Kim S-M, Kim E-H, Kim S-G, et al. Antiviral efficacies of FDA-approved drugs against SARS-CoV-2 infection in ferrets. MBio. 2020;11(3):e01114-20.
  • 143. Mitjà O, Clotet B. Use of antiviral drugs to reduce COVID-19 transmission. The Lancet Global Health. 2020;8(5):e639-e40.
  • 144. University T. Efficacay of Chloroquine or Hydroxychloroquine in COVID-19 Treatment,ClinicalTrials.gov Identifier: NCT04353336,ClinicalTrials.gov Identifier: NCT04353336. 2020.
  • 145. Hernandez A. Healthcare Worker Exposure Response and Outcomes of Hydroxychloroquine (HERO-HCQ), ClinicalTrials.gov Identifier: NCT04334148,April 6, 2020. 2020.
  • 146. Celje GaTH. Use of Bromhexine and Hydroxychloroquine for Treatment of COVID-19 Pneumonia,ClinicalTrials.gov Identifier: NCT04355026,April 21, 2020. 2020.
  • 147. Doyno C, Sobieraj DM, Baker WL. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clinical Toxicology. 2021;59(1):12-23.
  • 148. Watson JA, Tarning J, Hoglund RM, Baud FJ, Megarbane B, Clemessy J-L, et al. Concentration-dependent mortality of chloroquine in overdose. Elife. 2020;9:e58631.
  • 149. McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. The American journal of medicine. 1983;75(1):11-8.
  • 150. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020;579(7798):270-3.
  • 151. Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacological Reports. 2020:1-30.
  • 152. Aghdashi M, Aghdashi M, Rabiepoor M. Osteopoikilosis: pain as a presenting symptom in three family members. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders. 2011;4:CMAMD. S7035.
  • 153. Xie Y, You Q, Wu C, Cao S, Qu G, Yan X, et al. Impact of cardiovascular disease on clinical characteristics and outcomes of coronavirus disease 2019 (COVID-19). Circulation Journal. 2020:CJ-20-0348.
  • 154. Meng J, Xiao G, Zhang J, He X, Ou M, Bi J, et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerging microbes & infections. 2020;9(1):757-60.
  • 155. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology. 2020;94(7):e00127-20.
  • 156. Oliver ME, Hinks TS. Azithromycin in viral infections. Reviews in medical virology. 2021;31(2):e2163.
  • 157. Venditto VJ, Haydar D, Abdel-Latif A, Gensel J, Anstead MI, Pitts MG, et al. Immunomodulatory effects of azithromycin revisited: potential applications to COVID-19. Frontiers in Immunology. 2021;12:285.
  • 158. Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. New England Journal of Medicine. 2020;383(6):517-25.
  • 159. Abaleke E, Abbas M, Abbasi S, Abbott A, Abdelaziz A, Abdelbadiee S, et al. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. The Lancet. 2021;397(10274):605-12.
  • 160. Butler CC, Dorward J, Yu L-M, Gbinigie O, Hayward G, Saville BR, et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. The Lancet. 2021;397(10279):1063-74.
  • 161. University SV. Clarithromycin Versus Azithromycin in Treatment of Mild COVID-19 Infection,ClinicalTrials.gov Identifier: NCT04622891,November 10, 2020. 2020.
  • 162. Corporation HM. Hydroxychloroquine With or Without Azithromycin for Virologic Cure of COVID-19,ClinicalTrials.gov Identifier: NCT04349592,April 16, 2020. 2020.
  • 163. Gautret P, Lagier J-C, Parola P, Meddeb L, Mailhe M, Doudier B, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents. 2020;56(1):105949.
  • 164. Bersanelli M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Future Medicine; 2020.
  • 165. Sheppard M, Laskou F, Stapleton PP, Hadavi S, Dasgupta B. Tocilizumab (actemra). Human vaccines & immunotherapeutics. 2017;13(9):1972-88.
  • 166. Zhang X, Song K, Tong F, Fei M, Guo H, Lu Z, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood advances. 2020;4(7):1307.
  • 167. Khiali S, Khani E, Entezari‐Maleki T. A comprehensive review of tocilizumab in covid‐19 acute respiratory distress syndrome. The Journal of Clinical Pharmacology. 2020;60(9):1131-46.
  • 168. Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: preliminary results from a multi-centre, randomized, controlled trial. MedRxiv. 2020.
  • 169. Theoharides T, Conti P. Dexamethasone for COVID-19? Not so fast. J Biol Regul Homeost Agents. 2020;34(3):1241-3.
  • 170. Group TRC. Dexamethasone in hospitalized patients with Covid-19—preliminary report. The New England journal of medicine. 2020.
  • 171. Ranjbar K, Moghadami M, Mirahmadizadeh A, Fallahi MJ, Khaloo V, Shahriarirad R, et al. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. BMC infectious diseases. 2021;21(1):1-8.
  • 172. Li J, Lehmann C, Chen X, Romerio F, Lu W. Total chemical synthesis of human interferon alpha‐2b via native chemical ligation. Journal of peptide science. 2015;21(7):554-60.
  • 173. Thomas H, Foster G, Platis D. Mechanisms of action of interferon and nucleoside analogues. Journal of hepatology. 2003;39:93-8.
  • 174. Wang H-Q, Ma L-L, Jiang J-D, Pang R, Chen Y-J, Li Y-H. Recombinant human interferon alpha 2b broad-spectrum anti-respiratory viruses pharmacodynamics study in vitro. Yao xue xue bao= Acta pharmaceutica Sinica. 2014;49(11):1547-53.
  • 175. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends. 2020;14(1):69-71.
  • 176. Darazam IA, Shokouhi S, Pourhoseingholi MA, Irvani SSN, Mokhtari M, Shabani M, et al. Role of interferon therapy in severe COVID-19: the COVIFERON randomized controlled trial. Scientific reports. 2021;11(1):1-11.
  • 177. Phadke M, Saunik S. COVID‐19 treatment by repurposing drugs until the vaccine is in sight. Drug development research. 2020;81(5):541-3.
  • 178. Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M, Malek V, et al. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochemical pharmacology. 2015;93(3):343-51.
  • 179. Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Annals of translational medicine. 2016;4(21).
  • 180. Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection. European Heart Journal-Cardiovascular Pharmacotherapy. 2020;6(4):258-9.
  • 181. Lee KCH, Sewa DW, Phua GC. Potential role of statins in COVID-19. International Journal of Infectious Diseases. 2020;96:615-7.
  • 182. Subir R. Pros and cons for use of statins in people with coronavirus disease-19 (COVID-19). Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(5):1225-9.
  • 183. Zhang X-J, Qin J-J, Cheng X, Shen L, Zhao Y-C, Yuan Y, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell metabolism. 2020;32(2):176-87. e4.
  • 184. Vahedian-Azimi A, Mohammadi SM, Beni FH, Banach M, Guest PC, Jamialahmadi T, et al. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Archives of Medical Science: AMS. 2021;17(3):579.
  • 185. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences. 2020;117(12):6771-6.
  • 186. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science translational medicine. 2017;9(396).
  • 187. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B. 2017;93(7):449-63.
  • 188. Driouich J-S, Cochin M, Lingas G, Moureau G, Touret F, Petit PR, et al. Favipiravir and severe acute respiratory syndrome coronavirus 2 in hamster model. bioRxiv. 2020.
  • 189. Arévalo A, Pagotto R, Pórfido J, Daghero H, Segovia M, Yamasaki K, et al. Ivermectin reduces in vivo coronavirus infection in a mouse experimental model. Scientific Reports. 2021;11(1):1-12.
  • 190. De Meyer S, Bojkova D, Cinatl J, Van Damme E, Buyck C, Van Loock M, et al. Lack of antiviral activity of darunavir against SARS-CoV-2. International Journal of Infectious Diseases. 2020;97:7-10.
  • 191. Choy K-T, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral research. 2020;178:104786.
  • 192. Zhao H, To KK, Lam H, Zhou X, Chan JF-W, Peng Z, et al. Cross-linking peptide and repurposed drugs inhibit both entry pathways of SARS-CoV-2. Nature communications. 2021;12(1):1-9.
  • 193. Leneva I, Pshenichnaya N, Bulgakova V. Umifenovir and coronavirus infections: a review of research results and clinical practice. Terapevticheskii arkhiv. 2020;92(11):91-7.
  • 194. Li H, Liu R, Zhang R, Zhang S, Wei Y, Zhou H, et al. Protective effect of arbidol against pulmonary fibrosis and sepsis in mice. Frontiers in Pharmacology. 2020;11:2504. 195. NIAID. Adaptive COVID-19 Treatment Trial 4 (ACTT-4),ClinicalTrials.gov Identifier: NCT04640168,November 23, 2020. 2020.
  • 196. Hospital MARMCa. Efficacy of Ramdicivir and Baricitinib for the Treatment of Severe COVID 19 Patients,ClinicalTrials.gov Identifier: NCT04693026,January 5, 2021. 2021.
  • 197. Cantini F. Baricitinib Therapy in COVID-19,ClinicalTrials.gov Identifier: NCT04358614,April 24, 2020. 2020.
  • 198. Malignas GCdH. Treatment of SARS Caused by COVID-19 With Ruxolitinib,ClinicalTrials.gov Identifier: NCT04334044,April 3, 2020. 2020.
  • 199. Jena Uo. Ruxolitinib in Covid-19 Patients With Defined Hyperinflammation (RuxCoFlam),ClinicalTrials.gov Identifier: NCT04338958, April 8, 2020. 2020.
  • 200. University WM. Chloroquine as Antiviral Treatment in Coronavirus Infection 2020, ClinicalTrials.gov Identifier: NCT04331600,April 2, 2020. 2020.
  • 201. Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. BioRxiv. 2020.
  • 202. SEIMC-GESIDA F. Clinical Trial to Evaluate the Effectiveness and Safety of Tocilizumab for Treating Patients With COVID-19 Pneumonia,ClinicalTrials.gov Identifier: NCT04445272,June 24, 2020. 2020.
  • 203. Dentistry FCoMa. TOCILIZUMAB - An Option for Patients With COVID-19 Associated Cytokine Release Syndrome; A Single Center Experience,ClinicalTrials.gov Identifier: NCT04730323,January 29, 2021. 2021.
  • 204. Chicago Uo. Low-dose Tocilizumab Versus Standard of Care in Hospitalized Patients With COVID-19 (COVIDOSE-2,ClinicalTrials.gov Identifier: NCT04479358,July 21, 2020. 2020.
  • 205. Chicago Uo. Tocilizumab to Prevent Clinical Decompensation in Hospitalized, Non-critically Ill Patients With COVID-19 Pneumonitis (COVIDOSE,ClinicalTrials.gov Identifier: NCT04331795,April 2, 2020. 2020.
  • 206. Hosseinzadeh MH, Shamshirian A, Ebrahimzadeh MA. Dexamethasone vs COVID‐19: An experimental study in line with the preliminary findings of a large trial. International Journal of Clinical Practice. 2021;75(6):e13943.
  • 207. Institute RPC. Rintatolimod and IFN Alpha-2b for the Treatment of COVID-19 in Cancer Patients, ClinicalTrials.gov Identifier: NCT04379518,May 7, 2020. 2020.
There are 205 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review Articles
Authors

Ali Shahali 0000-0003-0869-5241

Vajihe Akbari 0000-0003-0754-1486

Rasool Soltani 0000-0001-9301-4732

Shirinsadat Badri 0000-0002-6851-9090

Rashid Alijani Ardeshir 0000-0001-9592-0886

Publication Date October 29, 2022
Submission Date March 26, 2022
Acceptance Date July 5, 2022
Published in Issue Year 2022 Volume: 39 Issue: 4

Cite

APA Shahali, A., Akbari, V., Soltani, R., Badri, S., et al. (2022). Drug repositioning approach to target ‎viral and host cells in the terms of COVID-19 treatment: A review of ‎in vivo experiments and clinical studies. Journal of Experimental and Clinical Medicine, 39(4), 1255-1269.
AMA Shahali A, Akbari V, Soltani R, Badri S, Alijani Ardeshir R. Drug repositioning approach to target ‎viral and host cells in the terms of COVID-19 treatment: A review of ‎in vivo experiments and clinical studies. J. Exp. Clin. Med. October 2022;39(4):1255-1269.
Chicago Shahali, Ali, Vajihe Akbari, Rasool Soltani, Shirinsadat Badri, and Rashid Alijani Ardeshir. “Drug Repositioning Approach to Target ‎viral and Host Cells in the Terms of COVID-19 Treatment: A Review of ‎in Vivo Experiments and Clinical Studies”. Journal of Experimental and Clinical Medicine 39, no. 4 (October 2022): 1255-69.
EndNote Shahali A, Akbari V, Soltani R, Badri S, Alijani Ardeshir R (October 1, 2022) Drug repositioning approach to target ‎viral and host cells in the terms of COVID-19 treatment: A review of ‎in vivo experiments and clinical studies. Journal of Experimental and Clinical Medicine 39 4 1255–1269.
IEEE A. Shahali, V. Akbari, R. Soltani, S. Badri, and R. Alijani Ardeshir, “Drug repositioning approach to target ‎viral and host cells in the terms of COVID-19 treatment: A review of ‎in vivo experiments and clinical studies”, J. Exp. Clin. Med., vol. 39, no. 4, pp. 1255–1269, 2022.
ISNAD Shahali, Ali et al. “Drug Repositioning Approach to Target ‎viral and Host Cells in the Terms of COVID-19 Treatment: A Review of ‎in Vivo Experiments and Clinical Studies”. Journal of Experimental and Clinical Medicine 39/4 (October 2022), 1255-1269.
JAMA Shahali A, Akbari V, Soltani R, Badri S, Alijani Ardeshir R. Drug repositioning approach to target ‎viral and host cells in the terms of COVID-19 treatment: A review of ‎in vivo experiments and clinical studies. J. Exp. Clin. Med. 2022;39:1255–1269.
MLA Shahali, Ali et al. “Drug Repositioning Approach to Target ‎viral and Host Cells in the Terms of COVID-19 Treatment: A Review of ‎in Vivo Experiments and Clinical Studies”. Journal of Experimental and Clinical Medicine, vol. 39, no. 4, 2022, pp. 1255-69.
Vancouver Shahali A, Akbari V, Soltani R, Badri S, Alijani Ardeshir R. Drug repositioning approach to target ‎viral and host cells in the terms of COVID-19 treatment: A review of ‎in vivo experiments and clinical studies. J. Exp. Clin. Med. 2022;39(4):1255-69.