Research Article
BibTex RIS Cite

Morphology and mineral composition of dentine of teeth with a wedge-shaped defect

Year 2023, Volume: 40 Issue: 2, 318 - 323, 19.07.2023

Abstract

Wedge-shaped defects (WSD) are a common pathology with multi-factorial etiology. To study the features of the morphological structure and mineral composition of teeth dentine with a WSD, to determine their possible relationship with potential etiological factors. We examined 10 removed for orthodontic indications teeth with WSD from both jaws and their longitudinal sections with the help of a JSM-6490 LV focused beam electron microscope (scanning) with system of energy-dispersive X-ray microanalysis INCA Penta FETх3. We have identified the mineral composition of 231 areas of dentine in the incisal region (tubercle), equator, cervical area, surface junction forming a WSD and in 150 μm from it as a percentage of the weight amounts of carbon, oxygen, calcium, phosphorus, sodium, magnesium, sulfur, chlorine, zinc, potassium, aluminum. The dentine of the teeth with a WSD was characterized by heterogeneity of the morphological structure which depended on the topography, the characteristics of the pathological process and it was combined with the changes in the mineral composition. The most pronounced differences in the ultrastructure of dentine were revealed in the area of the surface junction forming the defect and they were found out at a distance of 150 μm from it. We determined a significant difference in the amount of chemical elements in dentine at the surface junction forming the defect and at a distance of 150 μm from it; in the area of incisal region (tubercle) (with wear facets and without them), p≤0.05. It is impossible to identify one etiological factor responsible for the occurence of WSD of the teeth. We think that their treatment and prevention will be more effective when understanding the morphological features of the structure and mineral composition of hard dental tissues.

References

  • 1. Kitasako Y, Ikeda M, Takagaki T, Burrow MF, Tagami J. The prevalence of non-carious cervical lesions (NCCLs) with or without erosive etiological factors among adults of different ages in Tokyo. Clin Oral Investig 2021;25(12):6939-6947. Epub 2021/5/25. doi: 10.1007/s00784-021-03984-8. PubMed PMID: 34031732.
  • 2. Teixeira DNR, Zeola LF, Machado AC, Gomes RR, Souza PG, Mendes DC, et al. Relationship between noncarious cervical lesions, cervical dentin hypersensitivity, gingival recession, and associated risk factors: а cross-sectional study. J Dent 2018;76:93-97. Epub 2018/6/22. doi: 10.1016/j.jdent.2018.06.017. PubMed PMID: 29940290.
  • 3. Michael JA, Kaidonis JA, Townsend GC. Non-carious cervical lesions: a scanning electron microscopic study. Aust Dent J 2010;55(2):138-142. doi: 10.1111/j.1834-7819.2010.01213.x. PubMed PMID: 20604754.
  • 4. Levrini L, Di Benedetto G, Raspanti M. Dental wear: a scanning electron microscope study. Biomed Res Int 2014;2014:340425. Epub 2014/12/7. doi: 10.1155/2014/340425. PubMed PMID: 25548769; PubMed Central PMCID: PMC4274843.
  • 5. Walter C, Kress E, Götz H, Taylor K, Willershausen I, Zampelis A. The anatomy of non-carious cervical lesions. Clin Oral Investig 2014;18(1):139-46. Epub 2013/3/15. doi: 10.1007/s00784-013-0960-0. PubMed PMID: 23494453.
  • 6. Igarashi Y, Yoshida S, Kanazawa E. The prevalence and morphological types of non-carious cervical lesions (NCCL) in a contemporary sample of people. Odontology 2017;105(4):443-452. Epub 2017/3/8. doi: 10.1007/s10266-017-0300-y. PubMed PMID: 28275876.
  • 7. Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, Ghobrial M, Nath D, Morgano SM. Functional role of inorganic trace elements in dentin apatite tissue-Part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol 2022;71:126932. 126932. Epub ahead of print. doi: 10.1016/j.jtemb.2022. PubMed PMID: 35101699.
  • 8. Тkachenko IM, Brailko NN, Kovalenko VV, Nazarenko ZJ, Sheshukova OV. Morphological study of enamel and dentin teeth with carious process and non-carous lesions. Wiad Lek 2018;71(5):1001-1005. Russian. PubMed PMID: 30176630.
  • 9. Fernández-Escudero AC, Legaz I, Prieto-Bonete G, López-Nicolás M, Maurandi-López А, Pérez-Cárceles MD. Aging and trace elements in human coronal tooth dentine. Sci Rep 2020; 10(1):9964. doi: 10.1038/s41598-020-66472-1. PubMed PMID: 32561784; PubMed Central PMCID: PMC7305194.
  • 10. Stănuși A, Ionescu M, Cerbulescu C, Popescu SM, Osiac E, Mercuț R, et al. Modifications of the Dental Hard Tissues in the Cervical Area of Occlusally Overloaded Teeth Identified Using Optical Coherence Tomography. Medicina (Kaunas) 2022;58(6):702. doi: 10.3390/medicina58060702. PubMed PMID: 35743966; PubMed Central PMCID: PMC9231285.
  • 11. Femiano F, Femiano R, Femiano L, Festa VM, Rullo R, Perillo L. Noncarious cervical lesions: correlation between abfraction and wear facets in permanent dentition. Open Journal of Stomatology 2015;5:152-157. doi: 10.4236/ojst.2015.56021.
  • 12. Kunin AA, Evdokimova AYu, Moiseeva NS. Age-related differences of tooth enamel morphochemistry in health and dental caries. EPMA J 2015;6(1):3. doi: 10.1186/s13167-014-0025-8. PubMed PMID: 25685249; PubMed Central PMCID: PMC4327798.
  • 13. Yarova SP, Zabolotna II, Genzytska OS, Komlev AA. Features of dentine chemical composition of intact teeth and teeth with wedge-shaped defects. Wiad Lek 2021;74(8):1869-1875. PubMed PMID: 34537735.
  • 14. Yarova S, Zabolotna I, Genzytska O. Study of the morphological structure and chemical composition of the dentin of intact teeth and teeth with cervical pathology. Medical Studies/Studia Medyczne 2021;37(1):1-6. doi: https://doi.org/10.5114/ms.2021.104994.
  • 15. Zabolotna I. Study of the morphological structure of enamel and correlation of its chemical composition with dentin in intact teeth and with a cervical pathology. Journal of Stomatology 2021;74(1):9-15. doi: https://doi.org/10.5114/jos.2021.104691.
  • 16. Hayashi M, Kubo S, Pereira PNR, Ikeda M, Takagaki T, Nikaido T, et al. Progression of non-carious cervical lesions: 3D morphological analysis. Clin Oral Investig 2022;26(1):575-583. Epub 2021/8/2. doi: 10.1007/s00784-021-04036-x. PubMed PMID: 34341862.
  • 17. Abdalla R, Mitchell RJ, Ren YF. Non-carious cervical lesions imaged by focus variation microscopy. J Dent 2017;63:14-20. Epub 2017/5/3. doi: 10.1016/j.jdent.2017.05.001. PubMed PMID: 28478212.
  • 18. Chistyakova GG, Petrouk AA. Morphology of hard tissues of teeth with werdge-shaped defects. Modern Stomatology 2017;4:41-45. Russian.
  • 19. Daley TJ, Harbrow DJ, Kahler B, Young WG. The cervical wedge-shaped lesion in teeth: a light and electron microscopic study. Aust Dent J 2009;54(3):212-9. doi: 10.1111/j.1834-7819.2009.01121.x. PubMed PMID: 19709108.
  • 20. Yan W, Jiang E, Renteria C, Paranjpe A, Arola DD, Liao L, et al. Odontoblast apoptosis and intratubular mineralization of sclerotic dentin with aging. Arch Oral Biol 2022;136:105371. Epub 2022/2/8. doi: 10.1016/j.archoralbio.2022.105371. PubMed PMID: 35183920.
  • 21. Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young M, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 2016;11: 4743-4763. doi: 10.2147/IJN.S107624. PubMed PMID: 27695330; PubMed Central PMCID: PMC5034904.
  • 22. Guimarães JC, Guimarães Soella G, Brandão Durand L, Horn F, Narciso Baratieri L, Monteiro SJr, et al. Stress amplifications in dental non-carious cervical lesions. J Biomech 2014;47(2):410-6. Epub 2013/11/25. doi: 10.1016/j.jbiomech.2013.11.012. PubMed PMID: 24315624.
  • 23. Duangthip D, Man A, Poon PH, Lo ECM, Chu CH. Occlusal stress is involved in the formation of non-carious cervical lesions. A systematic review of abfraction. Am J Dent 2017;30(4):212-220. PubMed PMID: 29178704.
  • 24. Nascimento M, Dilbone D, Pereira P, Duarte W, Geraldeli S, Delgado A. Abfraction lesions: etiology, diagnosis, and treatment options. Clin Cosmet Investig Dent 2016;8:79–87. doi: 10.2147/CCIDE.S63465. PubMed PMID: 27217799; PubMed Central PMCID: PMC4861607.
  • 25. Badavannavar AN, Ajari S, Nayak KUS, Khijmatgar S. Abfraction: Etiopathogenesis, clinical aspect, and diagnostic-treatment modalities: A review. Indian J Dent Res 2020;31(2):305-311. doi: 10.4103/ijdr.IJDR_863_18. PubMed PMID: 32436913.
  • 26. Wada I, Shimada Y, Ikeda M, Sadr A, Nakashima S, Tagami J, et al. Clinical assessment of non carious cervical lesion using swept-source optical coherence tomography. J Biophotonics 2015;8(10):846-854. Epub 2014/12/11. doi: 10.1002/jbio.201400113. PubMed PMID: 25504772.
  • 27. Sabel N, Norén JG, Robertson A, Cornell DH. X-ray microanalysis of dentine in primary teeth diagnosed. Dentinogenesis Imperfecta type II. Eur Arch Paediatr Dent 2020;21(4):527-535. Epub 2019/12/10. doi: 10.1007/s40368-018-0392-2. PubMed PMID: 31823211; PubMed Central PMCID: PMC7415746.
  • 28. Worawongvasu R. Scanning electron microscope characterization of noncarious cervical lesions in human teeth. J Oral Maxillofac Pathol 2021;25(1):202. Epub 2021/5/14. doi: 10.4103/jomfp.JOMFP_232_20. PubMed PMID: 34349443; PubMed Central PMCID: PMC8272496.
  • 29. Lucas PW, van Casteren A. The wear and tear of teeth. Med Princ Pract 2015;24 Suppl 1(Suppl 1):3-13. Epub 2014/11/21. doi: 10.1159/000367976. PubMed PMID: 25427777; PubMed Central PMCID: PMC6489094.
Year 2023, Volume: 40 Issue: 2, 318 - 323, 19.07.2023

Abstract

References

  • 1. Kitasako Y, Ikeda M, Takagaki T, Burrow MF, Tagami J. The prevalence of non-carious cervical lesions (NCCLs) with or without erosive etiological factors among adults of different ages in Tokyo. Clin Oral Investig 2021;25(12):6939-6947. Epub 2021/5/25. doi: 10.1007/s00784-021-03984-8. PubMed PMID: 34031732.
  • 2. Teixeira DNR, Zeola LF, Machado AC, Gomes RR, Souza PG, Mendes DC, et al. Relationship between noncarious cervical lesions, cervical dentin hypersensitivity, gingival recession, and associated risk factors: а cross-sectional study. J Dent 2018;76:93-97. Epub 2018/6/22. doi: 10.1016/j.jdent.2018.06.017. PubMed PMID: 29940290.
  • 3. Michael JA, Kaidonis JA, Townsend GC. Non-carious cervical lesions: a scanning electron microscopic study. Aust Dent J 2010;55(2):138-142. doi: 10.1111/j.1834-7819.2010.01213.x. PubMed PMID: 20604754.
  • 4. Levrini L, Di Benedetto G, Raspanti M. Dental wear: a scanning electron microscope study. Biomed Res Int 2014;2014:340425. Epub 2014/12/7. doi: 10.1155/2014/340425. PubMed PMID: 25548769; PubMed Central PMCID: PMC4274843.
  • 5. Walter C, Kress E, Götz H, Taylor K, Willershausen I, Zampelis A. The anatomy of non-carious cervical lesions. Clin Oral Investig 2014;18(1):139-46. Epub 2013/3/15. doi: 10.1007/s00784-013-0960-0. PubMed PMID: 23494453.
  • 6. Igarashi Y, Yoshida S, Kanazawa E. The prevalence and morphological types of non-carious cervical lesions (NCCL) in a contemporary sample of people. Odontology 2017;105(4):443-452. Epub 2017/3/8. doi: 10.1007/s10266-017-0300-y. PubMed PMID: 28275876.
  • 7. Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, Ghobrial M, Nath D, Morgano SM. Functional role of inorganic trace elements in dentin apatite tissue-Part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol 2022;71:126932. 126932. Epub ahead of print. doi: 10.1016/j.jtemb.2022. PubMed PMID: 35101699.
  • 8. Тkachenko IM, Brailko NN, Kovalenko VV, Nazarenko ZJ, Sheshukova OV. Morphological study of enamel and dentin teeth with carious process and non-carous lesions. Wiad Lek 2018;71(5):1001-1005. Russian. PubMed PMID: 30176630.
  • 9. Fernández-Escudero AC, Legaz I, Prieto-Bonete G, López-Nicolás M, Maurandi-López А, Pérez-Cárceles MD. Aging and trace elements in human coronal tooth dentine. Sci Rep 2020; 10(1):9964. doi: 10.1038/s41598-020-66472-1. PubMed PMID: 32561784; PubMed Central PMCID: PMC7305194.
  • 10. Stănuși A, Ionescu M, Cerbulescu C, Popescu SM, Osiac E, Mercuț R, et al. Modifications of the Dental Hard Tissues in the Cervical Area of Occlusally Overloaded Teeth Identified Using Optical Coherence Tomography. Medicina (Kaunas) 2022;58(6):702. doi: 10.3390/medicina58060702. PubMed PMID: 35743966; PubMed Central PMCID: PMC9231285.
  • 11. Femiano F, Femiano R, Femiano L, Festa VM, Rullo R, Perillo L. Noncarious cervical lesions: correlation between abfraction and wear facets in permanent dentition. Open Journal of Stomatology 2015;5:152-157. doi: 10.4236/ojst.2015.56021.
  • 12. Kunin AA, Evdokimova AYu, Moiseeva NS. Age-related differences of tooth enamel morphochemistry in health and dental caries. EPMA J 2015;6(1):3. doi: 10.1186/s13167-014-0025-8. PubMed PMID: 25685249; PubMed Central PMCID: PMC4327798.
  • 13. Yarova SP, Zabolotna II, Genzytska OS, Komlev AA. Features of dentine chemical composition of intact teeth and teeth with wedge-shaped defects. Wiad Lek 2021;74(8):1869-1875. PubMed PMID: 34537735.
  • 14. Yarova S, Zabolotna I, Genzytska O. Study of the morphological structure and chemical composition of the dentin of intact teeth and teeth with cervical pathology. Medical Studies/Studia Medyczne 2021;37(1):1-6. doi: https://doi.org/10.5114/ms.2021.104994.
  • 15. Zabolotna I. Study of the morphological structure of enamel and correlation of its chemical composition with dentin in intact teeth and with a cervical pathology. Journal of Stomatology 2021;74(1):9-15. doi: https://doi.org/10.5114/jos.2021.104691.
  • 16. Hayashi M, Kubo S, Pereira PNR, Ikeda M, Takagaki T, Nikaido T, et al. Progression of non-carious cervical lesions: 3D morphological analysis. Clin Oral Investig 2022;26(1):575-583. Epub 2021/8/2. doi: 10.1007/s00784-021-04036-x. PubMed PMID: 34341862.
  • 17. Abdalla R, Mitchell RJ, Ren YF. Non-carious cervical lesions imaged by focus variation microscopy. J Dent 2017;63:14-20. Epub 2017/5/3. doi: 10.1016/j.jdent.2017.05.001. PubMed PMID: 28478212.
  • 18. Chistyakova GG, Petrouk AA. Morphology of hard tissues of teeth with werdge-shaped defects. Modern Stomatology 2017;4:41-45. Russian.
  • 19. Daley TJ, Harbrow DJ, Kahler B, Young WG. The cervical wedge-shaped lesion in teeth: a light and electron microscopic study. Aust Dent J 2009;54(3):212-9. doi: 10.1111/j.1834-7819.2009.01121.x. PubMed PMID: 19709108.
  • 20. Yan W, Jiang E, Renteria C, Paranjpe A, Arola DD, Liao L, et al. Odontoblast apoptosis and intratubular mineralization of sclerotic dentin with aging. Arch Oral Biol 2022;136:105371. Epub 2022/2/8. doi: 10.1016/j.archoralbio.2022.105371. PubMed PMID: 35183920.
  • 21. Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young M, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 2016;11: 4743-4763. doi: 10.2147/IJN.S107624. PubMed PMID: 27695330; PubMed Central PMCID: PMC5034904.
  • 22. Guimarães JC, Guimarães Soella G, Brandão Durand L, Horn F, Narciso Baratieri L, Monteiro SJr, et al. Stress amplifications in dental non-carious cervical lesions. J Biomech 2014;47(2):410-6. Epub 2013/11/25. doi: 10.1016/j.jbiomech.2013.11.012. PubMed PMID: 24315624.
  • 23. Duangthip D, Man A, Poon PH, Lo ECM, Chu CH. Occlusal stress is involved in the formation of non-carious cervical lesions. A systematic review of abfraction. Am J Dent 2017;30(4):212-220. PubMed PMID: 29178704.
  • 24. Nascimento M, Dilbone D, Pereira P, Duarte W, Geraldeli S, Delgado A. Abfraction lesions: etiology, diagnosis, and treatment options. Clin Cosmet Investig Dent 2016;8:79–87. doi: 10.2147/CCIDE.S63465. PubMed PMID: 27217799; PubMed Central PMCID: PMC4861607.
  • 25. Badavannavar AN, Ajari S, Nayak KUS, Khijmatgar S. Abfraction: Etiopathogenesis, clinical aspect, and diagnostic-treatment modalities: A review. Indian J Dent Res 2020;31(2):305-311. doi: 10.4103/ijdr.IJDR_863_18. PubMed PMID: 32436913.
  • 26. Wada I, Shimada Y, Ikeda M, Sadr A, Nakashima S, Tagami J, et al. Clinical assessment of non carious cervical lesion using swept-source optical coherence tomography. J Biophotonics 2015;8(10):846-854. Epub 2014/12/11. doi: 10.1002/jbio.201400113. PubMed PMID: 25504772.
  • 27. Sabel N, Norén JG, Robertson A, Cornell DH. X-ray microanalysis of dentine in primary teeth diagnosed. Dentinogenesis Imperfecta type II. Eur Arch Paediatr Dent 2020;21(4):527-535. Epub 2019/12/10. doi: 10.1007/s40368-018-0392-2. PubMed PMID: 31823211; PubMed Central PMCID: PMC7415746.
  • 28. Worawongvasu R. Scanning electron microscope characterization of noncarious cervical lesions in human teeth. J Oral Maxillofac Pathol 2021;25(1):202. Epub 2021/5/14. doi: 10.4103/jomfp.JOMFP_232_20. PubMed PMID: 34349443; PubMed Central PMCID: PMC8272496.
  • 29. Lucas PW, van Casteren A. The wear and tear of teeth. Med Princ Pract 2015;24 Suppl 1(Suppl 1):3-13. Epub 2014/11/21. doi: 10.1159/000367976. PubMed PMID: 25427777; PubMed Central PMCID: PMC6489094.
There are 29 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Iryna Zabolotna 0000-0002-3284-0392

Early Pub Date August 1, 2023
Publication Date July 19, 2023
Submission Date January 10, 2023
Acceptance Date March 23, 2023
Published in Issue Year 2023 Volume: 40 Issue: 2

Cite

APA Zabolotna, I. (2023). Morphology and mineral composition of dentine of teeth with a wedge-shaped defect. Journal of Experimental and Clinical Medicine, 40(2), 318-323.
AMA Zabolotna I. Morphology and mineral composition of dentine of teeth with a wedge-shaped defect. J. Exp. Clin. Med. July 2023;40(2):318-323.
Chicago Zabolotna, Iryna. “Morphology and Mineral Composition of Dentine of Teeth With a Wedge-Shaped Defect”. Journal of Experimental and Clinical Medicine 40, no. 2 (July 2023): 318-23.
EndNote Zabolotna I (July 1, 2023) Morphology and mineral composition of dentine of teeth with a wedge-shaped defect. Journal of Experimental and Clinical Medicine 40 2 318–323.
IEEE I. Zabolotna, “Morphology and mineral composition of dentine of teeth with a wedge-shaped defect”, J. Exp. Clin. Med., vol. 40, no. 2, pp. 318–323, 2023.
ISNAD Zabolotna, Iryna. “Morphology and Mineral Composition of Dentine of Teeth With a Wedge-Shaped Defect”. Journal of Experimental and Clinical Medicine 40/2 (July 2023), 318-323.
JAMA Zabolotna I. Morphology and mineral composition of dentine of teeth with a wedge-shaped defect. J. Exp. Clin. Med. 2023;40:318–323.
MLA Zabolotna, Iryna. “Morphology and Mineral Composition of Dentine of Teeth With a Wedge-Shaped Defect”. Journal of Experimental and Clinical Medicine, vol. 40, no. 2, 2023, pp. 318-23.
Vancouver Zabolotna I. Morphology and mineral composition of dentine of teeth with a wedge-shaped defect. J. Exp. Clin. Med. 2023;40(2):318-23.