Derleme
BibTex RIS Kaynak Göster

Çocukluk Çağında Nörolojik Bulguların Eşlik Ettiği Nadir Hastalıklar

Yıl 2025, Cilt: 47 Sayı: Beyin Farkındalığı 2025 Özel Sayısı, 49 - 56, 22.08.2025

Öz

Nadir hastalıklar (NH), genel tanım olarak 1/2.000’den daha az sıklıkta görülen hastalıkları ifade etmektedir. Sayısı giderek artmakla birlikte 6528 nadir hastalığın %71,9'u genetik özellikte ve %69,9'u çocukluk çağında başlamaktadır. NH’ın çoğuna nörolojik belirtiler eşlik etmektedir. Çocukları etkileyenlerin yaklaşık %90'ının önemli nörolojik etkileri vardır. NH’ın önemli bir kısmı genetiktir (Duchenne musküler distrofisi gibi). Amerika Birleşik Devletleri’nde seçilmiş 373 nadir hastalığın yıllık ekonomik maliyeti 2.2 trilyon ABD dolar, geç tanıya bağlı ekonomik kayıp kişi başına 517 bin ABD doları olarak hesaplanmıştır. Son yıllarda spinal musküler atrofide olduğu gibi nadir hastalıkların tanısı, tedavisi, yönetimi ve önlenmesi ile ilgili önemli gelişmeler yaşanmaktadır. Sağlık hizmetlerinde klasik usulden “akıllı sağlık sistemi” sürecine geçilmesi öngörülmektedir. Bu sürecin üç temel bileşeni entegre çoklu-omik analizleri, kişiye-özgü tıp ve yapay zekâ olarak gözükmektedir. Tanı konulduktan sonra tedavi edilebilir özellikte olanlarda diyet, farmakolojik, vitamin, eser element, enzim replasmanı, antisens oligonükleotid, kemik iliği nakli, kök hücre tedavisi, solid organ nakli, gen modülasyon ve replasman tedavileri gibi seçenekler bulunmaktadır. Solunum, beslenme, fizik tedavi gibi destekleyici yaklaşımlar hayati öneme sahiptir, çocuğun ve ailesinin yaşam kalitesini arttırılması hedeflenmelidir. Ayrıntılı öykü ve fizik muayene doğru ve erken tanının ilk ve en önemli aşamalarıdır. Nadir hastalıklar hakkında farkındalığın artması, bu çocuklarımıza erken tanı ve nörolojik hasar gelişmeden önce tedavi şansı sağlayabilir.

Etik Beyan

Yayın etiği kurallarına uygun olarak yazılmıştır.

Proje Numarası

Derleme

Teşekkür

Nadir hastalığı olan bireylere, ailelerine ve değerli hocam Prof.Dr. Ayten YAKUT'a teşekkür ederim.

Kaynakça

  • 1. Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 2018;19(5):253-68.
  • 2. Gülşen M, Turan B, Yılmaz AE. Nadir hastalıklarda yapay zekâ uygulamaları. Ankara Üniversitesi Tıp Fakültesi Mecmuası 2022;75(Suppl 1):63-69.
  • 3. https://www.orphadata.com Erişim 10.08.2025
  • 4. Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28(2):165-73.
  • 5. https://www.ninds.nih.gov/current-research/research-funded-ninds/translational-research/ultra-rare-gene-based-therapy-urgent-network Erişim 10.08.2025
  • 6. Editorial. Hope for rare diseases. The Lancet, 2022:404;10464:1701.
  • 7. https://globalgenes.org/rare-disease-facts/ Erişim 10.08.2025
  • 8. Elizabeth Sukkar Rare paediatric neurological diseases: A focus on Europe https://impact.economist.com/health/rare-paediatric-neurological-diseases-focus-europe Erişim 10.08.2025
  • 9. https://everylifefoundation.org/delayed-diagnosis-study/ Erişim 10.08.2025
  • 10. Gülfidan G, Arga KY, Demircan Çeker D, Karadağ A. Çoklu-omik veri entegrasyonu: yöntem, araç ve sağlık uygulamaları. Moleküler Biyoloji ve Genetik. Solak M (editör), Ankara, Türkiye Bilimler Akademisi Yayınları, 2023:687-90.
  • 11. Dutta SS, How is the ‘Omics’ Revolution Changing Healthcare? https://www.news-medical.net/health/How-is-the-e28098omicse28099-Revolution-Changing-Healthcare.aspx Erişim 10.08.2025
  • 12. https://bilimgenc.tubitak.gov.tr/makale/crispr-nobel-odullu-gen-duzenleme yöntemi Erişim 10.08.2025
  • 13. Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022;14(1):23.
  • 14. Stark Z, Scott RH. Genomic newborn screening for rare diseases. Nat Rev Genet 2023;24(11):755-66.
  • 15. Molla G, Bitew M. Revolutionizing personalized medicine: synergy with multi-omics data generation, main hurdles, and future perspectives. Biomedicines 2024;12(12):2750.
  • 16. Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, Ferreira CR, van Karnebeek CDM. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis 2021;16(1):170.
  • 17. Kwon JM. Neurodegenerative disorders of childhood. In: Kliegman RM, ST Geme JW, Blum NJ, Shah SS, Tasker RC (Edited by). Nelson Textbook of Pediatrics. 21st Edition, Philadelphia: Elsevier, 2020: 12407-34.
  • 18. Rathore G, Kang PB. Pediatric neuromuscular diseases. Pediatr Neurol 2023;149:1-14.
  • 19. Zerres K, Rudnik-Schöneborn S. Natural history in proximal spinal muscular atrophy: clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol 1995;52:518e523.
  • 20. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002;70:358e368.
  • 21. Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 1997;90:1013e1021.
  • 22. Miguel-Aliaga I, Culetto E, Walker DS, Baylis HA, Sattelle DB, Davies KE. The caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum Mol Genet 1999;8:2133e2143.
  • 23. Arnold ES, Fischbeck KH. Spinal muscular atrophy. Handb Clin Neurol 2018;148:591e601.
  • 24. Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin 2015;33:831e846.
  • 25. Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014;83:810e817.
  • 26. Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016;388:3017e3026.
  • 27. Darryl C, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul Disord 2019;29:842e856.
  • 28. Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017;377:1723e1732.
  • 29. Baranello G, Darras BT, Day JW, et al. Risdiplam in type 1 spinal muscular atrophy. N Engl J Med 2021;384:915e923.
  • 30. Darras BT, Masson R, Mazurkiewicz-Bełdzi nska M, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med 2021;385:427e435.
  • 31. Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017;377:1713e1722.
  • 32. Al-Zaidy S, Pickard AS, Kotha K, et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol 2019;54:179e185.
  • 33. https://hsgm.saglik.gov.tr/tr/tarama-programlari/evlilik-oncesi-sma-tasiyici-tarama-programi.html Erişim 10.08.2025
  • 34. https://hsgm.saglik.gov.tr/tr/tarama programlari/ntp.html?highlight=WyJudHAiLCJwcm9ncmFtXHUwMTMxLW50cCJd Erişim 10.08.2025

Rare Diseases Accompanied by Neurological Findings in Childhood

Yıl 2025, Cilt: 47 Sayı: Beyin Farkındalığı 2025 Özel Sayısı, 49 - 56, 22.08.2025

Öz

Rare diseases (RD), by general definition, refer to diseases that occur at a frequency of less than 1 in 2,000. While the number is increasing, 71.9% of the 6,528 rare diseases are genetic, and 69.9% begin in childhood. Most RD cases are accompanied by neurological symptoms. Approximately 90% of those affecting children have significant neurological effects. A significant portion of RD is genetic (such as Duchenne muscular dystrophy). The annual economic cost of 373 selected rare diseases in the United States is estimated at US$2.2 trillion, with the economic loss per capita due to late diagnosis being up to US$517,000. In recent years, significant advances have been made in the diagnosis, treatment, management, and prevention of rare diseases, such as spinal muscular atrophy. A transition from traditional healthcare to a "smart healthcare system" is envisioned. The three key components of this process appear to be integrated multi-omics analyses, personalized medicine, and artificial intelligence. After diagnosis, options for those with treatable conditions include diet, pharmacology, vitamins, trace elements, enzyme replacement, antisense oligonucleotide, bone marrow transplantation, stem cell therapy, solid organ transplantation, gene modulation, and replacement therapy. Supportive approaches, such as respiratory, nutritional, and physical therapy, are vital and should aim to improve the quality of life for both the child and their family. A detailed history and physical examination are the first and most essential steps in achieving accurate and early diagnosis. Increasing awareness of rare diseases can provide these children with the opportunity for early diagnosis and treatment before neurological damage develops.

Etik Beyan

This review was written in accordance with the rules of publication ethics.

Destekleyen Kurum

No

Proje Numarası

Derleme

Teşekkür

I would like to thank individuals with rare diseases, their families, and my dear mentor Prof. Dr. Ayten Yakut.

Kaynakça

  • 1. Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 2018;19(5):253-68.
  • 2. Gülşen M, Turan B, Yılmaz AE. Nadir hastalıklarda yapay zekâ uygulamaları. Ankara Üniversitesi Tıp Fakültesi Mecmuası 2022;75(Suppl 1):63-69.
  • 3. https://www.orphadata.com Erişim 10.08.2025
  • 4. Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28(2):165-73.
  • 5. https://www.ninds.nih.gov/current-research/research-funded-ninds/translational-research/ultra-rare-gene-based-therapy-urgent-network Erişim 10.08.2025
  • 6. Editorial. Hope for rare diseases. The Lancet, 2022:404;10464:1701.
  • 7. https://globalgenes.org/rare-disease-facts/ Erişim 10.08.2025
  • 8. Elizabeth Sukkar Rare paediatric neurological diseases: A focus on Europe https://impact.economist.com/health/rare-paediatric-neurological-diseases-focus-europe Erişim 10.08.2025
  • 9. https://everylifefoundation.org/delayed-diagnosis-study/ Erişim 10.08.2025
  • 10. Gülfidan G, Arga KY, Demircan Çeker D, Karadağ A. Çoklu-omik veri entegrasyonu: yöntem, araç ve sağlık uygulamaları. Moleküler Biyoloji ve Genetik. Solak M (editör), Ankara, Türkiye Bilimler Akademisi Yayınları, 2023:687-90.
  • 11. Dutta SS, How is the ‘Omics’ Revolution Changing Healthcare? https://www.news-medical.net/health/How-is-the-e28098omicse28099-Revolution-Changing-Healthcare.aspx Erişim 10.08.2025
  • 12. https://bilimgenc.tubitak.gov.tr/makale/crispr-nobel-odullu-gen-duzenleme yöntemi Erişim 10.08.2025
  • 13. Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022;14(1):23.
  • 14. Stark Z, Scott RH. Genomic newborn screening for rare diseases. Nat Rev Genet 2023;24(11):755-66.
  • 15. Molla G, Bitew M. Revolutionizing personalized medicine: synergy with multi-omics data generation, main hurdles, and future perspectives. Biomedicines 2024;12(12):2750.
  • 16. Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, Ferreira CR, van Karnebeek CDM. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis 2021;16(1):170.
  • 17. Kwon JM. Neurodegenerative disorders of childhood. In: Kliegman RM, ST Geme JW, Blum NJ, Shah SS, Tasker RC (Edited by). Nelson Textbook of Pediatrics. 21st Edition, Philadelphia: Elsevier, 2020: 12407-34.
  • 18. Rathore G, Kang PB. Pediatric neuromuscular diseases. Pediatr Neurol 2023;149:1-14.
  • 19. Zerres K, Rudnik-Schöneborn S. Natural history in proximal spinal muscular atrophy: clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol 1995;52:518e523.
  • 20. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002;70:358e368.
  • 21. Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 1997;90:1013e1021.
  • 22. Miguel-Aliaga I, Culetto E, Walker DS, Baylis HA, Sattelle DB, Davies KE. The caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum Mol Genet 1999;8:2133e2143.
  • 23. Arnold ES, Fischbeck KH. Spinal muscular atrophy. Handb Clin Neurol 2018;148:591e601.
  • 24. Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin 2015;33:831e846.
  • 25. Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014;83:810e817.
  • 26. Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016;388:3017e3026.
  • 27. Darryl C, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul Disord 2019;29:842e856.
  • 28. Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017;377:1723e1732.
  • 29. Baranello G, Darras BT, Day JW, et al. Risdiplam in type 1 spinal muscular atrophy. N Engl J Med 2021;384:915e923.
  • 30. Darras BT, Masson R, Mazurkiewicz-Bełdzi nska M, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med 2021;385:427e435.
  • 31. Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017;377:1713e1722.
  • 32. Al-Zaidy S, Pickard AS, Kotha K, et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol 2019;54:179e185.
  • 33. https://hsgm.saglik.gov.tr/tr/tarama-programlari/evlilik-oncesi-sma-tasiyici-tarama-programi.html Erişim 10.08.2025
  • 34. https://hsgm.saglik.gov.tr/tr/tarama programlari/ntp.html?highlight=WyJudHAiLCJwcm9ncmFtXHUwMTMxLW50cCJd Erişim 10.08.2025
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çocuk Nörolojisi
Bölüm DERLEMELER / REVIEWS
Yazarlar

Coşkun Yarar 0000-0001-7462-4578

Proje Numarası Derleme
Yayımlanma Tarihi 22 Ağustos 2025
Gönderilme Tarihi 16 Ağustos 2025
Kabul Tarihi 22 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 47 Sayı: Beyin Farkındalığı 2025 Özel Sayısı

Kaynak Göster

Vancouver Yarar C. Çocukluk Çağında Nörolojik Bulguların Eşlik Ettiği Nadir Hastalıklar. Osmangazi Tıp Dergisi. 2025;47(Beyin Farkındalığı 2025 Özel Sayısı):49-56.


13299        13308       13306       13305    13307  1330126978