Araştırma Makalesi
BibTex RIS Kaynak Göster

Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams

Yıl 2025, Cilt: 31 Sayı: 7
https://doi.org/10.5505/pajes.2025.67016

Öz

Closed cell polyurethane-based materials represent more than 23% of all polyurethane manufacturing. Unlike to the use of closed cell polyurethane foams in a large variety of applications, these materials exhibit some drawbacks. Their limited mechanical strength and their limited thermal constancy hindering their usage in some areas can be given as examples. In the purpose to overcome and enhance the weaknesses of rigid polyurethane foams and at the same time enlarge the utilization areas of these materials, numerous studies were realized in the literature. The utilization of Fe₃O₄ nanoparticles in various fields, including magnetic resonance, has gained significant attention in recent years. These additives can improve at the same time the thermal and mechanical properties of polyurethane foams. Nevertheless, the development of new methods concerning the surface modification of the nanoparticles is important. The improvement of the interfacial interactions at the polyurethane-filler interface was largely investigated with various agents such as silica, surfactants and precursor metals in the literature. However, the use of a titanate-based coupling agent was not yet researched. In this work, a surface coating of Fe3O4 nanoparticles with a titanate-based coupling agent (Ti-Fe3O4) was realized to produce Fe3O4 filled rigid polyurethane foam nanocomposites at different filler ratios. Microstructural, mechanical, thermal and electrical conductivity properties of all foam nanocomposites were characterized. The FTIR spectra exhibited only the presence of physical interactions. In addition, an increase of the crystallinity ratio with the increase of the filler content was observed. Concerning the electrical and thermal conductivity results, a noticeable improvement was detected from the pure rigid polyurethane foam to the 50 wt.% Ti-Fe3O4 filled nanocomposite. From the mechanical test results, a higher performance was observed for the rigid polyurethane foam nanocomposite produced at 12.5 wt.%.

Kaynakça

  • [1] Aydoğan B, Usta N. “Investigation into the effects of intumescent flame retardant addition on flame resistance and harmful emissions of rigid polyurethane foams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(8), 984-989, 2017.
  • [2] Chuang YC, Li TT, Huang CH, Huang CL, Lou CW, Chen YS, Lin JH. “Protective rigid fiber-reinforced polyurethane foam composite boards: Sound absorption, drop-weight impact and mechanical properties”. Fibers and Polymers, 17(12), 2116-2123, 2016.
  • [3] Akkoyun M, Suvaci E. “Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams”. Journal of Applied Polymer Science, 133(28), 43658, 2016.
  • [4] Akkoyun M. “Electrical and thermal conductivities of iron (II, III) oxide added rigid polyurethane foam nanocomposites”. Konya Mühendislik Bilimleri Dergisi, 9(1), 205-215, 2021.
  • [5] Alavi Nikje MM, Noruzian M, Moghaddam ST. “Novel polyurethane rigid foam/organically modified iron oxide nanocomposites”. Polymer Composites, 38(5), 877-883, 2015.
  • [6] Verdolotti L, Di Caprio MR, Lavorgna M, Buonocore GG. “Polyurethane nanocomposite foams: Correlation between nanofillers, porous morphology, and structural and functional properties”. Polyurethane Polym., 31, 277- 310, 2017.
  • [7] Bayrak A. Manyetik nano parçacıkların (mnp) kontrollü sentezi ve yüzey modifikasyonu ile polimerleşme tepkimelerinde kullanılmaları. MSc Thesis, İnönü Universitesi, Malatya, Türkiye, 2012.
  • [8] Hao H, Zhang A, Cheng Y, Cong P. “The modification mechanisms of silane coupling agent (SCA) on the physical properties of thermosetting polyurethane asphalt binder (PUAB)”. Construction and Building Materials, 350, 128836, 2022.
  • [9] Yun D, Kim JH. “Performance enhancements of PU composite foams reinforced with starfish particles chemically treated by silane derivatives”. Advanced Powder Technology, 35(3), 104349, 2024.
  • [10] Zhou X, Jiang F, Hu Z, Wu F, Gao M, Chai Z, Wang Y, Gu X, Wang Y. “Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide”. Molecules, 28, 6267, 2023.
  • [11] Latinwo GK, Ogunleye OR, Agarry SE, Dada EO, Tijani IA. “Effect of stearic acid and titanate coupling agent modified calcium carbonate on mechanical properties of flexible polyurethane foam”. International Journal of Composite Materials, 8(4), 91-96, 2018.
  • [12] Monte SJ. “Titanate and zirconate coupling agents in foamed polymers”. Cellular Polymers, 20(3), 149-188, 2001.
  • [13] Lin CR, Chu YM, Wang SC. “Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction”. Materials Letters, 60(4), 447-450, 2006.
  • [14] Segal GA. “Crystal structure determination by means of Xray diffraction”. 1967.
  • [15] Bradai H, Koubaa A, Bouafif H, Langlois A, Samet B. “Synthesis and characterization of wood rigid polyurethane composites”. Materials, 15(12), 4316, 2022.
  • [16] Shi Y, Zhan X, Luo Z, Zhang Q, Chen F. “Quantitative IR characterization of urea groups in waterborne polyurethanes”. Journal of Polymer Science Part A: Polymer Chemistry, 46(7), 2433–2444, 2008.
  • [17] Maia LS, Zanini NC, Camani PH, Barbosa RFS, Souza AG, Medeiros SF, Rosa DS. “Coffee husks residues incorporated into polyurethane foam towards greener material for diesel S10 and S500 removal and recovery”. Industrial Crops and Products, 189, 115747, 2022.
  • [18] Suleman S, Khan SM, Jameel T, Aleem W, Shafiq M. “Synthesis and characterization of flexible and rigid polyurethane foam”. Asian Journal of Applied Sciences, 2(5), 701-710, 2014.
  • [19] Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO. “Characterization of polyurethane resins by FTIR, TGA, and XRD”. Journal of Applied Polymer Science, 115(1), 263–268, 2010.
  • [20] Reinerte S, Avotina L, Zarins A, Cabulis U, Viksna A. “TG/DTA-FTIR as a method for analysis of tall oil based rigid polyurethane foam decomposition gaseous products in a low oxygen environment”. Polymer Degradation and Stability, 180, 109313, 2020.
  • [21] Członka S, Bertino MF, Kośny J, Strąkowska A, Masłowski M, Strzelec K. “Linseed oil as a natural modifier of rigid polyurethane foams”. Industrial Crops and Products, 115, 40–51, 2018.
  • [22] Sharpe LH. “Some fundamental issues in adhesion: a conceptual view”. J Adhes, 67, 277–289, 1998.
  • [23] Jesson DA, Watts JF. “The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification”. Polym Rev, 52, 321–354, 2012.
  • [24] Rothon RN, Hancock M. “General principles guiding selection and use of particulate materials”. Part Polym Compos Engl Longman Sci Tech, 1–42, 1995.
  • [25] Chuayjuljit S, Maungchareon A, Saravari O. “Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams”. Journal of Reinforced Plastics and Composites, 29(2), 218–225, 2010.
  • [26] dos Santos LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier JF, Martin F, Einloft S. “New magnetic nanocomposites: Polyurethane/Fe3O4-synthetic talc”. European Polymer Journal, 69, 38–49, 2015.
  • [27] Berrabah I, Dehouche N, Kaci M, Bruzaud S, Deguines CH, Delaite C. “Morphological, crystallinity and thermal stability characterization of poly (3-hydroxybutyrate-Co3-hydroxyhexanoate)/zinc oxide nanoparticles bionanocomposites: Effect of filler content. Mater Today Proc, 53(1), 223–227, 2022.
  • [28] Tuna S. “Optimization of parameters on fig leaf powders added polylactic acid-based composite films using Taguchi method”. J Therm Anal Calorim, 1–17, 2025.
  • [29] Siemann U. “Solvent cast technology–a versatile tool for thin film production. In: Scattering methods and the properties of polymer materials”. Springer, 1–14, 2005.
  • [30] Głowacz-Czerwonka D, Zakrzewska P, Oleksy M, Pielichowska K, Kuźnia M, Telejko T. “The influence of biowaste-based fillers on the mechanical and fire properties of rigid polyurethane foams”. Sustainable Materials and Technologies, 36, e00610, 2023.
  • [31] Akkoyun S, Akkoyun M. “Improvement of thermal conductivity of rigid polyurethane foams with aluminum nitride filler”. Cellular Polymers, 40, 87–98, 2021.
  • [32] Chen L, Rende D, Schadler LS, Ozisik R. "Polymer nanocomposite foams", Journal of Materials Chemistry A, 1, 3837, 2013. [33] Lee Y, Jang MG, Choi KH, Han C, Kim WN. "Liquid-type nucleating agent for improving thermal insulating properties of rigid polyurethane foams by HFC-365mfc as a blowing agent". Journal of Applied Polymer Science, 133, 43557, 2016.

Titanat kaplı manyetit nanopartiküllerin sert poliüretan köpüklerin özellikleri üzerindeki etkisi

Yıl 2025, Cilt: 31 Sayı: 7
https://doi.org/10.5505/pajes.2025.67016

Öz

Kapalı hücreli poliüretan bazlı malzemeler, tüm poliüretan üretiminin %23'ünden fazlasını temsil etmektedir. Kapalı hücreli poliüretan köpüklerin çok çeşitli uygulamalarda kullanılmasının aksine, bu malzemeler bazı dezavantajlar sergiler. Sınırlı mekanik dayanımları ve bazı alanlarda kullanımlarını engelleyen sınırlı termal dayanıklılıkları örnek olarak verilebilir. Sert poliüretan köpüklerin zayıf yönlerinin giderilmesi, geliştirilmesi ve aynı zamanda bu malzemelerin kullanım alanlarının genişletilmesi amacıyla literatürde çok sayıda çalışma gerçekleştirilmiştir. Son yıllarda, manyetik rezonans da dahil olmak üzere çeşitli alanlarda Fe₃O₄ nanopartiküllerinin kullanımı önemli ölçüde dikkat çekmiştir. Bu katkı maddeleri aynı zamanda poliüretan köpüklerin termal ve mekanik özelliklerini de geliştirebilir. Bununla birlikte nanopartiküllerin yüzey modifikasyonuna ilişkin yeni yöntemlerin geliştirilmesi önemlidir. Poliüretan-katkı arayüzündeki arayüz etkileşimlerinin iyileştirilmesi literatürde silika, yüzey aktif maddeler ve prekürsör metaller gibi çeşitli ajanlarla büyük ölçüde araştırılmıştır. Ancak, titanat bazlı bir bağlayıcı ajanının kullanımı henüz araştırılmamıştır. Bu çalışmada, farklı katkı oranlarında Fe3O4 katkılı sert poliüretan köpük nanokompozitleri üretmek için Fe3O4 nanopartiküllerinin titanat bazlı bir bağlayıcı ajan ile yüzey kaplaması (Ti-Fe3O4) gerçekleştirilmiştir. Tüm köpük nanokompozitlerin mikroyapısal, mekanik, termal ve elektriksel iletkenlik özellikleri karakterize edilmiştir. FTIR spektrumları yalnızca fiziksel etkileşimlerin varlığını göstermiştir. Ek olarak, katkı oranının artmasıyla kristalleşme oranında da bir artış gözlemlenmiştir. Elektriksel ve termal iletkenlik sonuçlarına ilişkin olarak, saf rijit poliüretan köpüğünden ağırlıkça %50 Ti-Fe3O4 katkılı nanokompozite göre gözle görülür bir iyileşme tespit edilmiştir. Mekanik test sonuçlarından ağırlıkça %12,5 oranında üretilen rijit poliüretan köpük nanokompozitinin daha yüksek performans gösterdiği gözlemlenmiştir.

Kaynakça

  • [1] Aydoğan B, Usta N. “Investigation into the effects of intumescent flame retardant addition on flame resistance and harmful emissions of rigid polyurethane foams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(8), 984-989, 2017.
  • [2] Chuang YC, Li TT, Huang CH, Huang CL, Lou CW, Chen YS, Lin JH. “Protective rigid fiber-reinforced polyurethane foam composite boards: Sound absorption, drop-weight impact and mechanical properties”. Fibers and Polymers, 17(12), 2116-2123, 2016.
  • [3] Akkoyun M, Suvaci E. “Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams”. Journal of Applied Polymer Science, 133(28), 43658, 2016.
  • [4] Akkoyun M. “Electrical and thermal conductivities of iron (II, III) oxide added rigid polyurethane foam nanocomposites”. Konya Mühendislik Bilimleri Dergisi, 9(1), 205-215, 2021.
  • [5] Alavi Nikje MM, Noruzian M, Moghaddam ST. “Novel polyurethane rigid foam/organically modified iron oxide nanocomposites”. Polymer Composites, 38(5), 877-883, 2015.
  • [6] Verdolotti L, Di Caprio MR, Lavorgna M, Buonocore GG. “Polyurethane nanocomposite foams: Correlation between nanofillers, porous morphology, and structural and functional properties”. Polyurethane Polym., 31, 277- 310, 2017.
  • [7] Bayrak A. Manyetik nano parçacıkların (mnp) kontrollü sentezi ve yüzey modifikasyonu ile polimerleşme tepkimelerinde kullanılmaları. MSc Thesis, İnönü Universitesi, Malatya, Türkiye, 2012.
  • [8] Hao H, Zhang A, Cheng Y, Cong P. “The modification mechanisms of silane coupling agent (SCA) on the physical properties of thermosetting polyurethane asphalt binder (PUAB)”. Construction and Building Materials, 350, 128836, 2022.
  • [9] Yun D, Kim JH. “Performance enhancements of PU composite foams reinforced with starfish particles chemically treated by silane derivatives”. Advanced Powder Technology, 35(3), 104349, 2024.
  • [10] Zhou X, Jiang F, Hu Z, Wu F, Gao M, Chai Z, Wang Y, Gu X, Wang Y. “Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide”. Molecules, 28, 6267, 2023.
  • [11] Latinwo GK, Ogunleye OR, Agarry SE, Dada EO, Tijani IA. “Effect of stearic acid and titanate coupling agent modified calcium carbonate on mechanical properties of flexible polyurethane foam”. International Journal of Composite Materials, 8(4), 91-96, 2018.
  • [12] Monte SJ. “Titanate and zirconate coupling agents in foamed polymers”. Cellular Polymers, 20(3), 149-188, 2001.
  • [13] Lin CR, Chu YM, Wang SC. “Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction”. Materials Letters, 60(4), 447-450, 2006.
  • [14] Segal GA. “Crystal structure determination by means of Xray diffraction”. 1967.
  • [15] Bradai H, Koubaa A, Bouafif H, Langlois A, Samet B. “Synthesis and characterization of wood rigid polyurethane composites”. Materials, 15(12), 4316, 2022.
  • [16] Shi Y, Zhan X, Luo Z, Zhang Q, Chen F. “Quantitative IR characterization of urea groups in waterborne polyurethanes”. Journal of Polymer Science Part A: Polymer Chemistry, 46(7), 2433–2444, 2008.
  • [17] Maia LS, Zanini NC, Camani PH, Barbosa RFS, Souza AG, Medeiros SF, Rosa DS. “Coffee husks residues incorporated into polyurethane foam towards greener material for diesel S10 and S500 removal and recovery”. Industrial Crops and Products, 189, 115747, 2022.
  • [18] Suleman S, Khan SM, Jameel T, Aleem W, Shafiq M. “Synthesis and characterization of flexible and rigid polyurethane foam”. Asian Journal of Applied Sciences, 2(5), 701-710, 2014.
  • [19] Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO. “Characterization of polyurethane resins by FTIR, TGA, and XRD”. Journal of Applied Polymer Science, 115(1), 263–268, 2010.
  • [20] Reinerte S, Avotina L, Zarins A, Cabulis U, Viksna A. “TG/DTA-FTIR as a method for analysis of tall oil based rigid polyurethane foam decomposition gaseous products in a low oxygen environment”. Polymer Degradation and Stability, 180, 109313, 2020.
  • [21] Członka S, Bertino MF, Kośny J, Strąkowska A, Masłowski M, Strzelec K. “Linseed oil as a natural modifier of rigid polyurethane foams”. Industrial Crops and Products, 115, 40–51, 2018.
  • [22] Sharpe LH. “Some fundamental issues in adhesion: a conceptual view”. J Adhes, 67, 277–289, 1998.
  • [23] Jesson DA, Watts JF. “The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification”. Polym Rev, 52, 321–354, 2012.
  • [24] Rothon RN, Hancock M. “General principles guiding selection and use of particulate materials”. Part Polym Compos Engl Longman Sci Tech, 1–42, 1995.
  • [25] Chuayjuljit S, Maungchareon A, Saravari O. “Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams”. Journal of Reinforced Plastics and Composites, 29(2), 218–225, 2010.
  • [26] dos Santos LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier JF, Martin F, Einloft S. “New magnetic nanocomposites: Polyurethane/Fe3O4-synthetic talc”. European Polymer Journal, 69, 38–49, 2015.
  • [27] Berrabah I, Dehouche N, Kaci M, Bruzaud S, Deguines CH, Delaite C. “Morphological, crystallinity and thermal stability characterization of poly (3-hydroxybutyrate-Co3-hydroxyhexanoate)/zinc oxide nanoparticles bionanocomposites: Effect of filler content. Mater Today Proc, 53(1), 223–227, 2022.
  • [28] Tuna S. “Optimization of parameters on fig leaf powders added polylactic acid-based composite films using Taguchi method”. J Therm Anal Calorim, 1–17, 2025.
  • [29] Siemann U. “Solvent cast technology–a versatile tool for thin film production. In: Scattering methods and the properties of polymer materials”. Springer, 1–14, 2005.
  • [30] Głowacz-Czerwonka D, Zakrzewska P, Oleksy M, Pielichowska K, Kuźnia M, Telejko T. “The influence of biowaste-based fillers on the mechanical and fire properties of rigid polyurethane foams”. Sustainable Materials and Technologies, 36, e00610, 2023.
  • [31] Akkoyun S, Akkoyun M. “Improvement of thermal conductivity of rigid polyurethane foams with aluminum nitride filler”. Cellular Polymers, 40, 87–98, 2021.
  • [32] Chen L, Rende D, Schadler LS, Ozisik R. "Polymer nanocomposite foams", Journal of Materials Chemistry A, 1, 3837, 2013. [33] Lee Y, Jang MG, Choi KH, Han C, Kim WN. "Liquid-type nucleating agent for improving thermal insulating properties of rigid polyurethane foams by HFC-365mfc as a blowing agent". Journal of Applied Polymer Science, 133, 43557, 2016.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Bilimi ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Buse Fem Yilmaz Bu kişi benim 0000-0001-6564-0752

Meral Akkoyun Kurtlu 0000-0002-8113-5534

Sibel Tuna 0000-0002-4406-9048

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 12 Kasım 2025
Gönderilme Tarihi 9 Temmuz 2024
Kabul Tarihi 21 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 7

Kaynak Göster

APA Yilmaz, B. F., Akkoyun Kurtlu, M., & Tuna, S. (2025). Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.67016
AMA Yilmaz BF, Akkoyun Kurtlu M, Tuna S. Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(7). doi:10.5505/pajes.2025.67016
Chicago Yilmaz, Buse Fem, Meral Akkoyun Kurtlu, ve Sibel Tuna. “Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 7 (Kasım 2025). https://doi.org/10.5505/pajes.2025.67016.
EndNote Yilmaz BF, Akkoyun Kurtlu M, Tuna S (01 Kasım 2025) Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE B. F. Yilmaz, M. Akkoyun Kurtlu, ve S. Tuna, “Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi: 10.5505/pajes.2025.67016.
ISNAD Yilmaz, Buse Fem vd. “Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (Kasım2025). https://doi.org/10.5505/pajes.2025.67016.
JAMA Yilmaz BF, Akkoyun Kurtlu M, Tuna S. Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.67016.
MLA Yilmaz, Buse Fem vd. “Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi:10.5505/pajes.2025.67016.
Vancouver Yilmaz BF, Akkoyun Kurtlu M, Tuna S. Impact of titanate coated magnetite nanoparticles on the properties of rigid polyurethane foams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.