Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri

Yıl 2026, Cilt: 32 Sayı: 2

Öz

Bu çalışmada, takviye edilmemiş ZK60 alaşımı ve %0.2 ila %0.5 arasında değişen oranlarda alüminyum nitrür (AlN) nano partikülleri dahil edilmiş %15 silisyum karbür (SiC) parçacıklarıyla takviye edilmiş ZK60 matris kompozitinin mikro yapısı, mekanik özellikleri ve aşınma davranışı üzerindeki etkisi incelenmiştir. SiC ve AlN, ana alaşım olarak birincil toz magnezyum ile öngörülen miktarlarda mekanik olarak karıştırıldı, 500 MPa basınç altında ardından kompaktlar üretildi ve sinterlendi. Bundan sonra, yarı katı erime sıcaklığındaki mekanik bir karıştırıcı, sıkıştırılmış ve sinterlenmiş takviye malzemelerini ZK60 metal matrisine karıştırdı. Eriyikler 30 dakika homojenleştirildi ve kompozit numuneler yapmak için metal kalıplara döküldü. 410 °C'de 24 saatlik homojenizasyondan sonra, kompozit numuneler 320 °C'de 16: 1 oranında 0,3 mm/sn'de ekstrüde edildi. %15 SiC ile takviye edilen ZK60 matrisi, ilave AlN içeriğinin artmasıyla tane boyutunda bir azalma gösterdi. Döküm ZK60 alaşımının tane boyutu, %15 SiC ve %0.5 AlN eklenmesiyle %26 oranında azalırken, ekstrüzyon işleminden sonra aynı kompozitin tane boyutu %28 oranında azaldı. ZK60 matrisine döküm yoluyla %15 SiC ve %0.5 AlN eklenmesiyle sertlikte %37 oranında bir iyileşme sağlandı. Ekstrüde edilmiş ZK60 alaşımıyla karşılaştırıldığında, ekstrüde edilmiş ZK60 + %15SiC + %0.5 nano AlN kompoziti sertlikte ve basınç dayanımında %21 oranında iyileşme gösterdi. Ekstrüde edilmiş ZK60+15%SiC+%0.5 nano AlN kompozitinin aşınma hızı, ekstrüde edilmiş ve takviye içermeyen ZK60 alaşımınınkinden %37 daha düşüktür. Nano AlN ilaveli kompozitlerde mekanik özelliklerin ve aşınma direncinin artması, tane boyutunun iyileştirilmesine ve nanopartiküller tarafından dislokasyon hareketinin engellenmesine atfedilmektedir.

Kaynakça

  • [1] Figueiredo, R.B. and Langdon, T.G. “Record Superplastic Ductility in a Magnesium Alloy Processed by Equal‐Channel Angular Pressing”. Advanced Engineering Materials, 10(1–2), 37–40, 2008.
  • [2] Huan, Z. et al. “In Vitro Degradation Behavior and Cytocompatibility of Mg–Zn–Zr Alloys”. Journal of Materials Science: Materials in Medicine, 21(9), 2623–2635, 2010.
  • [3] Wang, Q. et al. “In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated With Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications”. International Journal of Molecular Sciences, 14(12), 23614–23628, 2013.
  • [4] Xue, Y. et al. “Corrosion Performances of Micro-Arc Oxidation Coatings on AZ31B, AZ80 and ZK60 Cast Mg Alloys”. Progress in Canadian Mechanical Engineering, York, Canada, May 18–20, 2018.
  • [5] Chen, J. et al. “Effect of Heat Treatment on Mechanical and Biodegradable Properties of an Extruded ZK60 Alloy”. Bioactive Materials, 2(1), 19–26, 2017.
  • [6] Lin, T. et al. “Improving Mechanical Properties of ZK60 Magnesium Alloy by Cryogenic Treatment Before Hot Extrusion”. High Temperature Materials and Processes, 39(1), 200–2008, 2020.
  • [7] Yu, K. et al. “Plastic Deformation Behavior of ZK60 Magnesium Alloy With Addition of Neodymium”. Journal of Central South University of Technology, 15(4), 434–437, 2008.
  • [8] Torbati-Sarraf, S.A. et al. “Orientation Imaging Microscopy and Microhardness in a ZK60 Magnesium Alloy Processed by High-Pressure Torsion”. Journal of Alloys and Compounds, 12, 185–193, 2017.
  • [9] Zhan, L. et al. “Thermoelectric Coupling Deep Drawing Process of ZK60 Magnesium Alloys”. The International Journal of Advanced Manufacturing Technology, 126(7–8), 3005–3014, 2023.
  • [10] Liang, H. et al. “Homogenization Treatment and Heat Deformation Behavior of Cast ZK60 Magnesium Alloy”. Journal of Physics: Conference Series, 2459(1), 012308, 2023.
  • [11] Feng, X. et al. “Effects of Aging Process on the Damping Performance of ZK60 Magnesium Alloys Prepared by Large Strain Rolling”. Materials, 13(23), 5574, 2020.
  • [12] Zhu, S. et al. “Dynamic Compression Behavior of ZK60 Magnesium Alloy Under Different Strain Rate”. Proceedings of the 5th International Conference on Civil Engineering and Transportation, Paris, France, 15 November, 2015.
  • [13] Chen, H. et al. “Effect of Heat Treatment on Microstructure and Mechanical Properties of Twin Roll Cast and Sequential Warm Rolled ZK60 Alloy Sheets”. Journal of Alloys and Compounds, 476(1–2), 324–328, 2009.
  • [14] Qi, Z. et al. “Comparison of Degradation Behavior and the Associated Bone Response of ZK60 and PLLA In Vivo”. Journal of Biomedical Materials Research Part A, 102(5), 1255–1263, 2014.
  • [15] Fu, Y. et al. “The Evaluation of a Degradable Magnesium Alloy Bio-Transfix Nail System Compounded With Bone Morphogenetic Protein-2 in a Beagle Anterior Cruciate Ligament Reconstruction Model”. Journal of Biomaterials Applications, 34(5), 687–698, 2019.
  • [16] Jin, W. and Zhou, Y. “Fabrication of Cu-Adhered Silicon Carbide Particles and Its Effect on Properties of Fe-Based Matrix Composites”. Materials Research Express, 9(6), 066501, 2022.
  • [17] James, J. et al. “Comparative Study of Composites Reinforced With SiC and TiB₂”. Procedia Engineering, 97, 1012–1017, 2014.
  • [18] Yang, Z. et al. “Effect of the Particle Size and Matrix Strength on Strengthening and Damage Process of the Particle Reinforced Metal Matrix Composites”. Materials, 14(3), 675, 2021.
  • [19] Veličković, S. et al. “Tribological Characteristics of Al/SiC/Gr Hybrid Composites”. MATEC Web of Conferences, Zabore, Poland, 31 July, 2018.
  • [20] Dharmalingam, S. et al. “Analysis of Dry Sliding Friction and Wear Behavior of Aluminum–Alumina Composites Using Taguchi’s Techniques”. Journal of Composite Materials, 44(18), 2161–2177.
  • [21] Abbass, M.K. et al. “Study of Corrosion Resistance of Aluminum Alloy 6061/SiC Composites in 3.5% NaCl Solution”. International Journal of Materials Mechanics and Manufacturing, 3(1), 31–35, 2015.
  • [22] Hu, Z. et al. “Study of Spark Plasma Sintered Nanostructured Ferritic Steel Alloy With Silicon Carbide Addition”. Materials Science and Engineering A, 670, 75–80, 2016.
  • [23] Luo, L. “Modification of the Model for Calculating the Long SiC Fibre-Reinforced Metal Matrix Composites Transverse Strength and Study for Interfacial Influences”. Materials Research Express, 10(9), 096507, 2023.
  • [24] Ravikumar, M.M. et al. “Investigations on Tensile Fractography and Wear Characteristics of Al7075–Al₂O₃–SiC Hybrid Metal Matrix Composites Routed Through Liquid Metallurgical Techniques”. Frattura ed Integrità Strutturale, 15(56), 160–170, 2021.
  • [25] Tatarko, P. et al. “Joining of CVD–SiC Coated and Uncoated Fibre Reinforced Ceramic Matrix Composites With Pre-Sintered Ti₃SiC₂ MAX Phase Using Spark Plasma Sintering”. Journal of the European Ceramic Society, 36(16), 3957–3967, 2016.
  • [26] Wang, M. et al. “Sintering and Mechanical Properties of (SiC + TiCx)p/Fe Composites Synthesized From Ti₃AlC₂, SiC, and Fe Powders”. Materials, 14(9), 2453, 2021.
  • [27] Ye, H.Z. et al. “In Situ Synthesis of AlN in Mg–Al Alloys by Liquid Nitridation”. Journal of Materials Processing Technology, 166(1), 79–85, 2005.
  • [28] Sun, K. et al. “Dispersion and Preparation of Nano-AlN/Aa6061 Composites by Pressure Infiltration Method”. Nanomaterials, 12(13), 2258, 2022.
  • [29] Giannopoulou, D. et al. “Influence of AlN Nanoparticle Addition on Microstructure and Mechanical Properties of Extruded Pure Magnesium and an Aluminum-Free Mg–Zn–Y Alloy”. Metals, 9(6), 667, 2019.
  • [30] Sager, et al. “Characterization and Corrosion Behavior of Composites Reinforced With ZK60, AlN, and SiC Particles”. Engineering Science and Technology, an International Journal, 41, 101389, 2023.
  • [31] Banijamali, S.M. et al. “Effect of Ce Addition on the Tribological Behavior of ZK60 Mg-Alloy”. Metals and Materials International, 27(8), 2732–2742, 2021.
  • [32] Zengin, H. et al. “Tensile and Wear Properties of As-Cast and As-Extruded ZK60 Magnesium Alloys Containing Minor Nd Additions”. Materials Research Express, 6(8), 086528, 2019.
  • [33] Kim, J.M. and Park, J.K. “On the AlN Precipitation and Grain Refinement in the Al(N)-Added Medium C–Mn Steels”. Philosophical Magazine Letters, 97(8), 320–327, 2017.
  • [34] Wang, Q. et al. “Effect of Preparation Parameter on Microstructure and Grain Refining Behavior of In Situ AlN–TiN–TiB₂/Al Composite Inoculants on Pure Aluminum”. Metals, 7, 56, 2017.
  • [35] Liang, T. et al. “A First-Principles Study of the Heterogeneous Nucleation of Mg on AlN Reinforcement Particles”. Materials Today Communications, 34, 105277, 2023.
  • [36] Li, J.-F. et al. “Hot Isostatically Pressed SiC–AlN Powder Mixtures: Effect of Milling on Solid-Solution Formation and Related Properties”. Journal of the American Ceramic Society, 81(6), 1445–1452.
  • [37] Stanford, N. et al. “Solute Segregation and Texture Modification in an Extruded Magnesium Alloy Containing Gadolinium”. Scripta Materialia, 65(10), 919–921, 2011.
  • [38] Caceres, C.H. et al. “Grain Size Hardening in Mg and Mg–Zn Solid Solutions”. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42(7), 1950–1959, 2011.
  • [39] Li, J. et al. “Rapid Refinement of SiC Particles by a Novel Milling Process With Balls of Multiple Size”. Journal of Materials Research and Technology, 9(4), 8667–8674, 2020.
  • [40] Sankhla, A.M. et al. “Effect of Mixing Method and Particle Size on Hardness and Compressive Strength of Aluminium-Based Metal Matrix Composite Prepared Through Powder Metallurgy Route”. Journal of Materials Research and Technology, 18, 282–292, 2022.
  • [41] Moazami-Goudarzi, M. and Akhlagh, F. “Effect of SiC Nanoparticles Content and Mg Addition on the Characteristics of Al/SiC Composite Powders Produced via In Situ Powder Metallurgy Method”. Particulate Science and Technology: An International Journal, 31(3), 234–240, 2013.
  • [42] Sandlöbes, S. et al. “On the Role of Non-Basal Deformation Mechanisms for the Ductility of Mg and Mg–Y Alloys”. Acta Materialia, 59(2), 429–439, 2011.
  • [43] Guangjin, H. and Li, W. “Influence of Nano Particle Distribution on the Strengthening Mechanisms of Magnesium Matrix Composites”. Fuhe Cailiao Xuebao (Acta Materiae Compositae Sinica), 30(2), 105–110, 2013.
  • [44] Nie, K.B. et al. “Magnesium Matrix Composite Reinforced by Nanoparticles – A Review”. Journal of Magnesium and Alloys, 9(1), 57–77, 2021.
  • [45] Zhu, Z.-H. et al. “Synergistic Effects of Hybrid (SiC + TiC) Nanoparticles and Dynamic Precipitates in the Design of a High-Strength Magnesium Matrix Nanocomposite”. Materials Chemistry and Physics, 259, 124048, 2021.
  • [46] Rashad, M. et al. “Development of Magnesium–Graphene Nanoplatelets Composite”. Journal of Composite Materials, 49(3), 285–293, 2014.
  • [47] Ma, X. et al. “A Novel Al Matrix Composite Reinforced by Nano-AlNp Network”. Scientific Reports, 6(1), 34919, 2016.
  • [48] Mohanavel, V. et al. “Synthesis, Characterization and Properties of Stir Cast AA6351–Aluminium Nitride (AlN) Composites”. Journal of Materials Research, 31, 3824–3831, 2016.
  • [49] Rodríguez, J. et al. “Sliding Wear of Alumina/Silicon Carbide Nanocomposites”. Journal of the American Ceramic Society, 82(8), 1959–2284, 1999.
  • [50] Behnamian, Y. et al. “Tribological Behavior of ZK60 Magnesium Matrix Composite Reinforced by Hybrid MWCNTs/B₄C Prepared by Stir Casting Method”. Tribology International, 165, 107299, 2022.
  • [51] Yigezu, B.S. et al. “Effect of Sliding Distance, Applied Load, and Weight Percentage of Reinforcement on the Abrasive Wear Properties of In Situ Synthesized Al–12%Si/TiC Composites”. Tribology Transactions, 56(4), 546–554, 2013.

Microstructure characterization and wear properties of the new ZK60 SiC/AlN reinforced composites

Yıl 2026, Cilt: 32 Sayı: 2

Öz

This study examined the impact of incorporating aluminum nitride (AlN) nanoparticles, ranging from 0.2% to 0.5%, on the microstructure, mechanical characteristics, and wear behavior of and ZK60 matrix composite reinforced with 15% silicon carbide (SiC) particles and unreinforced ZK60 alloy. SiC and AlN were mechanically mixed in prescribed amounts with primary powder magnesium as the main alloy, then compacts were produced and sintered under 500 MPa pressure. After that, a mechanical mixer at semisolid melting temperature mixed the compacted and sintered reinforcement materials into the ZK60 metal matrix. The melts were homogenized for 30 min and poured into metal molds to make composite samples. After 24 h of homogenization at 410 °C, the composite samples were extruded at 0.3 mm/s at 320 °C with a ratio of 16: 1. The ZK60 matrix reinforced with 15% SiC exhibited a reduction in grain size with an increase in the additional AlN content. The grain size of the cast ZK60 alloy decreased by 26% with the incorporation of 15% SiC and 0.5% AlN, while that of the grain size after the extrusion process was reduced by 28%. The addition of 15% SiC and 0.5% AlN to the ZK60 matrix by casting resulted in a 37% improvement in hardness. In comparison to the extruded ZK60 alloy, the extruded ZK60+15%SiC+0.5% nano AlN composite exhibited enhancements in hardness and compressive strength by 21%. The wear rate of the extruded ZK60+15%SiC+%0.5 nano AlN composite is 37% inferior than that of the extruded and unreinforced ZK60 alloy. The enhancement of mechanical characteristics and wear resistance in composites with nano AlN additions is ascribed to the refinement of grain size and the obstruction of dislocation movement by nanoparticles.

Kaynakça

  • [1] Figueiredo, R.B. and Langdon, T.G. “Record Superplastic Ductility in a Magnesium Alloy Processed by Equal‐Channel Angular Pressing”. Advanced Engineering Materials, 10(1–2), 37–40, 2008.
  • [2] Huan, Z. et al. “In Vitro Degradation Behavior and Cytocompatibility of Mg–Zn–Zr Alloys”. Journal of Materials Science: Materials in Medicine, 21(9), 2623–2635, 2010.
  • [3] Wang, Q. et al. “In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated With Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications”. International Journal of Molecular Sciences, 14(12), 23614–23628, 2013.
  • [4] Xue, Y. et al. “Corrosion Performances of Micro-Arc Oxidation Coatings on AZ31B, AZ80 and ZK60 Cast Mg Alloys”. Progress in Canadian Mechanical Engineering, York, Canada, May 18–20, 2018.
  • [5] Chen, J. et al. “Effect of Heat Treatment on Mechanical and Biodegradable Properties of an Extruded ZK60 Alloy”. Bioactive Materials, 2(1), 19–26, 2017.
  • [6] Lin, T. et al. “Improving Mechanical Properties of ZK60 Magnesium Alloy by Cryogenic Treatment Before Hot Extrusion”. High Temperature Materials and Processes, 39(1), 200–2008, 2020.
  • [7] Yu, K. et al. “Plastic Deformation Behavior of ZK60 Magnesium Alloy With Addition of Neodymium”. Journal of Central South University of Technology, 15(4), 434–437, 2008.
  • [8] Torbati-Sarraf, S.A. et al. “Orientation Imaging Microscopy and Microhardness in a ZK60 Magnesium Alloy Processed by High-Pressure Torsion”. Journal of Alloys and Compounds, 12, 185–193, 2017.
  • [9] Zhan, L. et al. “Thermoelectric Coupling Deep Drawing Process of ZK60 Magnesium Alloys”. The International Journal of Advanced Manufacturing Technology, 126(7–8), 3005–3014, 2023.
  • [10] Liang, H. et al. “Homogenization Treatment and Heat Deformation Behavior of Cast ZK60 Magnesium Alloy”. Journal of Physics: Conference Series, 2459(1), 012308, 2023.
  • [11] Feng, X. et al. “Effects of Aging Process on the Damping Performance of ZK60 Magnesium Alloys Prepared by Large Strain Rolling”. Materials, 13(23), 5574, 2020.
  • [12] Zhu, S. et al. “Dynamic Compression Behavior of ZK60 Magnesium Alloy Under Different Strain Rate”. Proceedings of the 5th International Conference on Civil Engineering and Transportation, Paris, France, 15 November, 2015.
  • [13] Chen, H. et al. “Effect of Heat Treatment on Microstructure and Mechanical Properties of Twin Roll Cast and Sequential Warm Rolled ZK60 Alloy Sheets”. Journal of Alloys and Compounds, 476(1–2), 324–328, 2009.
  • [14] Qi, Z. et al. “Comparison of Degradation Behavior and the Associated Bone Response of ZK60 and PLLA In Vivo”. Journal of Biomedical Materials Research Part A, 102(5), 1255–1263, 2014.
  • [15] Fu, Y. et al. “The Evaluation of a Degradable Magnesium Alloy Bio-Transfix Nail System Compounded With Bone Morphogenetic Protein-2 in a Beagle Anterior Cruciate Ligament Reconstruction Model”. Journal of Biomaterials Applications, 34(5), 687–698, 2019.
  • [16] Jin, W. and Zhou, Y. “Fabrication of Cu-Adhered Silicon Carbide Particles and Its Effect on Properties of Fe-Based Matrix Composites”. Materials Research Express, 9(6), 066501, 2022.
  • [17] James, J. et al. “Comparative Study of Composites Reinforced With SiC and TiB₂”. Procedia Engineering, 97, 1012–1017, 2014.
  • [18] Yang, Z. et al. “Effect of the Particle Size and Matrix Strength on Strengthening and Damage Process of the Particle Reinforced Metal Matrix Composites”. Materials, 14(3), 675, 2021.
  • [19] Veličković, S. et al. “Tribological Characteristics of Al/SiC/Gr Hybrid Composites”. MATEC Web of Conferences, Zabore, Poland, 31 July, 2018.
  • [20] Dharmalingam, S. et al. “Analysis of Dry Sliding Friction and Wear Behavior of Aluminum–Alumina Composites Using Taguchi’s Techniques”. Journal of Composite Materials, 44(18), 2161–2177.
  • [21] Abbass, M.K. et al. “Study of Corrosion Resistance of Aluminum Alloy 6061/SiC Composites in 3.5% NaCl Solution”. International Journal of Materials Mechanics and Manufacturing, 3(1), 31–35, 2015.
  • [22] Hu, Z. et al. “Study of Spark Plasma Sintered Nanostructured Ferritic Steel Alloy With Silicon Carbide Addition”. Materials Science and Engineering A, 670, 75–80, 2016.
  • [23] Luo, L. “Modification of the Model for Calculating the Long SiC Fibre-Reinforced Metal Matrix Composites Transverse Strength and Study for Interfacial Influences”. Materials Research Express, 10(9), 096507, 2023.
  • [24] Ravikumar, M.M. et al. “Investigations on Tensile Fractography and Wear Characteristics of Al7075–Al₂O₃–SiC Hybrid Metal Matrix Composites Routed Through Liquid Metallurgical Techniques”. Frattura ed Integrità Strutturale, 15(56), 160–170, 2021.
  • [25] Tatarko, P. et al. “Joining of CVD–SiC Coated and Uncoated Fibre Reinforced Ceramic Matrix Composites With Pre-Sintered Ti₃SiC₂ MAX Phase Using Spark Plasma Sintering”. Journal of the European Ceramic Society, 36(16), 3957–3967, 2016.
  • [26] Wang, M. et al. “Sintering and Mechanical Properties of (SiC + TiCx)p/Fe Composites Synthesized From Ti₃AlC₂, SiC, and Fe Powders”. Materials, 14(9), 2453, 2021.
  • [27] Ye, H.Z. et al. “In Situ Synthesis of AlN in Mg–Al Alloys by Liquid Nitridation”. Journal of Materials Processing Technology, 166(1), 79–85, 2005.
  • [28] Sun, K. et al. “Dispersion and Preparation of Nano-AlN/Aa6061 Composites by Pressure Infiltration Method”. Nanomaterials, 12(13), 2258, 2022.
  • [29] Giannopoulou, D. et al. “Influence of AlN Nanoparticle Addition on Microstructure and Mechanical Properties of Extruded Pure Magnesium and an Aluminum-Free Mg–Zn–Y Alloy”. Metals, 9(6), 667, 2019.
  • [30] Sager, et al. “Characterization and Corrosion Behavior of Composites Reinforced With ZK60, AlN, and SiC Particles”. Engineering Science and Technology, an International Journal, 41, 101389, 2023.
  • [31] Banijamali, S.M. et al. “Effect of Ce Addition on the Tribological Behavior of ZK60 Mg-Alloy”. Metals and Materials International, 27(8), 2732–2742, 2021.
  • [32] Zengin, H. et al. “Tensile and Wear Properties of As-Cast and As-Extruded ZK60 Magnesium Alloys Containing Minor Nd Additions”. Materials Research Express, 6(8), 086528, 2019.
  • [33] Kim, J.M. and Park, J.K. “On the AlN Precipitation and Grain Refinement in the Al(N)-Added Medium C–Mn Steels”. Philosophical Magazine Letters, 97(8), 320–327, 2017.
  • [34] Wang, Q. et al. “Effect of Preparation Parameter on Microstructure and Grain Refining Behavior of In Situ AlN–TiN–TiB₂/Al Composite Inoculants on Pure Aluminum”. Metals, 7, 56, 2017.
  • [35] Liang, T. et al. “A First-Principles Study of the Heterogeneous Nucleation of Mg on AlN Reinforcement Particles”. Materials Today Communications, 34, 105277, 2023.
  • [36] Li, J.-F. et al. “Hot Isostatically Pressed SiC–AlN Powder Mixtures: Effect of Milling on Solid-Solution Formation and Related Properties”. Journal of the American Ceramic Society, 81(6), 1445–1452.
  • [37] Stanford, N. et al. “Solute Segregation and Texture Modification in an Extruded Magnesium Alloy Containing Gadolinium”. Scripta Materialia, 65(10), 919–921, 2011.
  • [38] Caceres, C.H. et al. “Grain Size Hardening in Mg and Mg–Zn Solid Solutions”. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42(7), 1950–1959, 2011.
  • [39] Li, J. et al. “Rapid Refinement of SiC Particles by a Novel Milling Process With Balls of Multiple Size”. Journal of Materials Research and Technology, 9(4), 8667–8674, 2020.
  • [40] Sankhla, A.M. et al. “Effect of Mixing Method and Particle Size on Hardness and Compressive Strength of Aluminium-Based Metal Matrix Composite Prepared Through Powder Metallurgy Route”. Journal of Materials Research and Technology, 18, 282–292, 2022.
  • [41] Moazami-Goudarzi, M. and Akhlagh, F. “Effect of SiC Nanoparticles Content and Mg Addition on the Characteristics of Al/SiC Composite Powders Produced via In Situ Powder Metallurgy Method”. Particulate Science and Technology: An International Journal, 31(3), 234–240, 2013.
  • [42] Sandlöbes, S. et al. “On the Role of Non-Basal Deformation Mechanisms for the Ductility of Mg and Mg–Y Alloys”. Acta Materialia, 59(2), 429–439, 2011.
  • [43] Guangjin, H. and Li, W. “Influence of Nano Particle Distribution on the Strengthening Mechanisms of Magnesium Matrix Composites”. Fuhe Cailiao Xuebao (Acta Materiae Compositae Sinica), 30(2), 105–110, 2013.
  • [44] Nie, K.B. et al. “Magnesium Matrix Composite Reinforced by Nanoparticles – A Review”. Journal of Magnesium and Alloys, 9(1), 57–77, 2021.
  • [45] Zhu, Z.-H. et al. “Synergistic Effects of Hybrid (SiC + TiC) Nanoparticles and Dynamic Precipitates in the Design of a High-Strength Magnesium Matrix Nanocomposite”. Materials Chemistry and Physics, 259, 124048, 2021.
  • [46] Rashad, M. et al. “Development of Magnesium–Graphene Nanoplatelets Composite”. Journal of Composite Materials, 49(3), 285–293, 2014.
  • [47] Ma, X. et al. “A Novel Al Matrix Composite Reinforced by Nano-AlNp Network”. Scientific Reports, 6(1), 34919, 2016.
  • [48] Mohanavel, V. et al. “Synthesis, Characterization and Properties of Stir Cast AA6351–Aluminium Nitride (AlN) Composites”. Journal of Materials Research, 31, 3824–3831, 2016.
  • [49] Rodríguez, J. et al. “Sliding Wear of Alumina/Silicon Carbide Nanocomposites”. Journal of the American Ceramic Society, 82(8), 1959–2284, 1999.
  • [50] Behnamian, Y. et al. “Tribological Behavior of ZK60 Magnesium Matrix Composite Reinforced by Hybrid MWCNTs/B₄C Prepared by Stir Casting Method”. Tribology International, 165, 107299, 2022.
  • [51] Yigezu, B.S. et al. “Effect of Sliding Distance, Applied Load, and Weight Percentage of Reinforcement on the Abrasive Wear Properties of In Situ Synthesized Al–12%Si/TiC Composites”. Tribology Transactions, 56(4), 546–554, 2013.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Khaled Saleh Aldoukali Matoug Bu kişi benim

İsmail Esen

Abdulmuaen Mm Sager Bu kişi benim

Hayrettin Ahlatcı

Bengü Akın Bu kişi benim

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 12 Kasım 2025
Gönderilme Tarihi 11 Temmuz 2025
Kabul Tarihi 21 Temmuz 2025
Yayımlandığı Sayı Yıl 2026 Cilt: 32 Sayı: 2

Kaynak Göster

APA Matoug, K. S. A., Esen, İ., Sager, A. M., … Ahlatcı, H. (2025). Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(2). https://doi.org/10.5505/pajes.2025.58201
AMA Matoug KSA, Esen İ, Sager AM, Ahlatcı H, Akın B. Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;32(2). doi:10.5505/pajes.2025.58201
Chicago Matoug, Khaled Saleh Aldoukali, İsmail Esen, Abdulmuaen Mm Sager, Hayrettin Ahlatcı, ve Bengü Akın. “Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, sy. 2 (Kasım 2025). https://doi.org/10.5505/pajes.2025.58201.
EndNote Matoug KSA, Esen İ, Sager AM, Ahlatcı H, Akın B (01 Kasım 2025) Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 2
IEEE K. S. A. Matoug, İ. Esen, A. M. Sager, H. Ahlatcı, ve B. Akın, “Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 32, sy. 2, 2025, doi: 10.5505/pajes.2025.58201.
ISNAD Matoug, Khaled Saleh Aldoukali vd. “Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/2 (Kasım2025). https://doi.org/10.5505/pajes.2025.58201.
JAMA Matoug KSA, Esen İ, Sager AM, Ahlatcı H, Akın B. Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.58201.
MLA Matoug, Khaled Saleh Aldoukali vd. “Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 32, sy. 2, 2025, doi:10.5505/pajes.2025.58201.
Vancouver Matoug KSA, Esen İ, Sager AM, Ahlatcı H, Akın B. Yeni ZK60 SiC/AlN takviyeli kompozitlerin mikroyapı karakterizasyonu ve aşınma özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(2).





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.