Araştırma Makalesi
BibTex RIS Kaynak Göster

Ruminant Rasyonlarına Farklı Oranlarda İkame Edilen Sandal Ağacı (Arbutus Andrachne) Yapraklarının Potansiyel Yem Değeri ve Anti-metanojenik Özelliklerinin İn Vitro Gaz Üretim Yöntemi ile Belirlenmesi

Yıl 2022, Cilt: 1 Sayı: 1, 1 - 6, 25.02.2022

Öz

Bu çalışma, ruminant rasyonlarında yer alan mısır silajı yerine farklı dozlarda (%10, 20 ve 30) sandal ağacı (Arbutus andrachne) yaprağı ikamesinin in vitro gaz (GÜ) ve metan üretimi (CH4), metabolik enerji (ME) ve organik madde sindirim derecesi (OMS) üzerine etkilerini tespit etmek amacıyla yürütülmüştür. Mısır silajı (%25), yonca samanı (%25), kuru çayır otu (%20) ve karma yemden (%30) oluşan ruminant rasyonu kontrol grubunu oluşturmuştur. Kontrol (K) grubunda yer alan mısır silajı yerine %10 (S1), 20 (S2) ve 30 (S3) düzeylerinde sandal ağacı yaprağı ikame edilerek hazırlanan rasyonlar ise deneme gruplarını oluşturmuştur. Sandal ağacı yaprağı ikamesinin in vitro GÜ, CH4, ME ve OMS üzerine etkisi önemli bulunmuştur (P<0.001). K, S1, S2 ve S3 rasyonlarında 24 saatlik in vitro GÜ değerleri 37.32- 46.01 ml/200 mg KM, CH4 değerleri 5.76-7.51 ml, ME değerleri 8.08-9.26 Mj/kg KM, NEL değerleri 4.96-5.82 Mj/kg KM ve OMS değerleri %58.67-66.62 arasında saptanmıştır. Sonuç olarak, artan dozlarda sandal ağacı yaprağı ikamesinin gaz ve metan üretimini azalttığı tespit edilmiştir. Ayrıca, in vivo çalışmalarla mikroorganizma sayımları, yem tüketim miktarları ve yemden yararlanma katsayıları belirlenerek elde edilen verilerin desteklenmesi gerektiği kanaatine varılmıştır.

Kaynakça

  • Albores-Moreno S, Alayón-Gamboa JA, Ayala-Burgos AJ, Solorio-Sánchez FJ, Aguilar-Pérez CF, Olivera-Castillo L, Ku-Vera JC, 2017. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Tropical animal health and production, 49(4): 857.
  • Atalay AI, Ozkan CO, Kaya E, Kurt O, Kamalak A, 2017. Effect of maturity onchemical composition and nutritive value of leaves of Arbutus andrachne shrub and rumen in vitro methane production. Livestock Research for Rural Development, 29(7): 2017.
  • AOAC, 1990. Official Methods of Analysis, 14th edn. Washington, DC: Association of Official Analytical Chemists.
  • Başer A, Kamalak A, 2020. Türkiye’nin Akdeniz bölgesinde yetişen bazı baklagil ağaç yapraklarının yem değerleri ve in vitro fermentasyon özellikleri. Türk Tarım ve Doğa Bilimleri Dergisi, 7(4): 940-947.
  • Boga M, Kurt O, Ozkan CO, Atalay Aİ, Kamalak A, 2020. Evaluation of some commercial dairy rations in terms of chemical composition, methane production, net energy and organic matter digestibility. Progress In Nutrition, 22(1): 199-203.
  • Carlin A, 2006. Working paper: Global climate control: Is there a better strategy than reducing greenhouse gas emissions? p.:1-65
  • Cengiz T, Kamalak A, 2020. Farklı bölgelerde yetişen söğüt yapraklarının potansiyel Besleme değerlerinin ve anti-metanojenik özelliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(5): 1351-1358.
  • Duncan DB, 1955. Multiple range and multiple F tests. Biometrics, 11(1): 1-42.
  • El-Waziry A, Al-Haidary A, Okab A, Samara E, Abdoun K, 2015. Effect of dietary seaweed (Ulva lactuca) supplementation on growth performance of sheep and on in vitro gas production kinetics. Turkish Journal of Veterinary and Animal Sciences, 39(1): 81-86.
  • Getachew G, Crovett, GM, Fondevila M, Krishnamoorthy U, Singh B, Spanghero M, Steingass H, Robinson PH, Kailas MM, 2002. Laboratory variation of 24 h in vitro gas production and estimated metabolizable energy values of ruminant feeds. Animal Feed Science and Technology, 102(1-4): 169-180.
  • Getachew G, Robinson PH, DePeters EJ, Taylor SJ, Gisi DD, Higginbotham GE, Riordan TJ, 2005. Methane production from commercial dairy rations estimated using an in vitro gas technique. Animal Feed Science and Technology, 123: 391-402.
  • Goel G, Makkar HPS, Becker K, 2008. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin‐rich fractions from different plant materials. Journal of applied microbiology, 105(3): 770-777.
  • Johnson KA, Johnson DE, 1995. Methane emissions from cattle. Journal of Animal Science, 73: 2483- 2492.
  • Kamalak A, Canpolat Ö, Gürbüz Y, Erol A, Özay O, 2005. Effect of maturity stage on chemical composition, in vitro and in situ dry matter degradation of tumbleweed hay (Gundelia tournefortii L.). Small Ruminant Research, 58: 149-156.
  • Kaya A, Kaya H, Çelebi Ş, 2012. Ruminant Hayvanlarda Metan Üretimini Azaltmaya Yönelik Çalışmalar/Studies to Reduce The Production of Methane from Ruminant. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 43(2): 197-204.
  • Kaya A, Kaya A, 2021. The Effect of Some Vegetable Oils Added to Dairy Calf Rations on İn vitro Feed Value and Enteric Methane Production. Journal of Agricultural Production, 2(1): 1-6.
  • Khang DN, Anh DTN, Preston TR, 2019. Effect of cassava leaf meal and coconut cake on methane production in an in vitro incubation using cassava root pulp and urea as substrate. Livestock Research for Rural Development, 31.
  • Kılıç Ü, Abdıwalı MA, 2016. Alternatif kaba yem kaynağı olarak şarapçılık endüstrisi üzüm atıklarının in vitro gerçek sindirilebilirlikleri ve nispi yem değerlerinin belirlenmesi. Kafkas Universitesi Veteriner Fakültesi Dergisi, 22(6).
  • Kılıç Ü, Sarıçiçek BZ, 2006. İn vitro gaz üretim tekniğinde sonuçları etkileyen faktörler. Hayvansal Üretim, 47(2).
  • Kongmanila D, 2012. Erythrina foliage as an alternative feed for growing goats in Lao PDR (Vol. 2012, No. 61).
  • Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, Gómez-Bravo CA, Aguilar-Pérez CF, Solorio-Sánchez FJ, 2020. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 7: 584.
  • Lopez S, Makkar HPS, Soliva CR, 2010. Screening plants and plant products for methane inhibitors. In: Vercoe PE, Makkar HPS, Schlink A, (Eds): İn vitro screening of plant resources for extra nutritional attributes in ruminants: Nuclear and related methodologies. London, New York, pp. 191- 231.
  • Makkar HPS, Blümmel M, Becker K, 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73(6): 897-913.
  • Meale SJ, McAllister TA, Bauchemin KA, Harstad OM, Chaves AV, 2012. Strategies to reduce greenhouse gases from ruminant livestock. Acta Agriculturae Scandinavica, Section A — Animal Science, 2012, 62: 199–211.
  • Menke KH, Steingass H, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research Development, 28: 7-55.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W, 1979. The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor. Journal of Agricultural Science (Camb), 93:217– 222.
  • Nair PKR, 1993. An Introduction to Agroforestry by Kluwer Academic Publishers. The Netherlands.
  • Salazar SSV, Jiménez-Ferrer G, Molina-Botero IC, Ku-Vera JC, Chirinda N, Arango J, 2021. İn vitro Methane Mitigation Potential of Foliage of Fodder Trees Mixed at Two Levels with a Tropical Grass. SPSS, 2011. IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp 440.
  • Steinfeld H, Gerber P, Wassenaar TD, Castel V, Rosales M, Rosales M, de Haan C, 2006. Livestock's long shadow: environmental issues and options. Food & Agriculture Org.
  • Özdemir Ö, Kaya A, 2020. Bazı Ağaç Yapraklarının İn Vitro Gaz Üretim Tekniğiyle Yem Değerlerinin Belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3): 454-461.
  • Piñeiro-Vázquez AT, Canul-Solis JR, Jiménez-Ferrer GO, Alayón-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Aguilar-Pérez AC, Ku-Vera JC, 2018. Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage. Asian-Australasian Journal of Animal Sciences, 31(11): 1738.
  • Tatlıyer A, Kamalak A, Öztürk D, 2019. Sandal ağacı (Arbutus andrachne) yapraklarının potansiyel besleme değerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(2): 315-321.
  • Van Soest PV, Robertson JB, Lewis B, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583-3597.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ali Kaya 0000-0002-7694-7220

Atilla Başer 0000-0002-7218-7543

Adem Kaya

Bilal Selçuk

Yayımlanma Tarihi 25 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 1

Kaynak Göster

APA Kaya, A., Başer, A., Kaya, A., Selçuk, B. (2022). Ruminant Rasyonlarına Farklı Oranlarda İkame Edilen Sandal Ağacı (Arbutus Andrachne) Yapraklarının Potansiyel Yem Değeri ve Anti-metanojenik Özelliklerinin İn Vitro Gaz Üretim Yöntemi ile Belirlenmesi. Palandöken Journal of Animal Sciences Technology and Economics, 1(1), 1-6.