Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of resin photopolymerization on primary teeth pulpal temperature change

Yıl 2023, Cilt: 16 Sayı: 3, 466 - 474, 01.07.2023
https://doi.org/10.31362/patd.1257746

Öz

Purpose: The polymerization of restorative materials has the potential to increase pulpal temperature and may result in damage to the health of pulpal tissue. The aim of this study is to investigate the pulpal temperature change of primary teeth with two light-emitting diode (LED) light-curing units (LCUs) (Valo Cordless®, EliparTM DeepCure-S) and three restorative groups (Filtek™ Bulk Fill Flowable, Filtek™ Z250 Universal Restorative and empty cavity) by using a microcirculation model.
Material and methods: Ten sound human maxillary second primary molars were used. Standardized Class V cavity preparations were performed with a dentin thickness of 1 mm and restorative groups were cured with LED LCUs. The highest temperature point in the pulp chamber was recorded. A repeated measures ANOVA and paired samples t-test were used for analysis of the data (p<0.05).
Results: EliparTM DeepCure-S groups exceeded the accepted critical temperature point of 5.6°C for Z250, Bulk Fill, and empty cavity (7.6±0.36, 7.44±0.7, and 5.81±1.6, respectively). None of the groups cured with Valo Cordless® reached the critical point (5.35±0.54, 5.44±0.41, and 5.02±0.89, respectively). The values in the different groups cured with Valo Cordless® were not significantly different (p≥0.05), but empty cavity showed significantly lower temperature values than the composite resin groups when the EliparTM DeepCure-S device was used (p<0.05).
Conclusion: The study demonstrated a correlation between the increased power of LED LCUs and pulp damage in restorative procedures.

Kaynakça

  • 1. Trowbridge HO, Kim S. Pulp development, structure and function. In: Cohen S, Burns RC. Pathways of the Pulp, 6th ed. St. Louis: Mosby, 1994;296-336. Available at: https://www.academia. edu/28876240/Pathways_of_the_pulp_COHEN_. Accessed January 22, 2023
  • 2. Ozturk B, Usumez A, Ozturk AN, Ozer F. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 2004;91:436-440. https://doi.org/10.1016/S0022391304001131
  • 3. Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006;96:328-331. https://doi.org/10.1016/j.prosdent.2006.09.008
  • 4. Dodge WW, Dale RA, Cooley RL, Duke ES. Comparison of wet and dry finishing of resin composites with aluminum oxide discs. Dent Mater 1991;7:18-20. https://doi.org/10.1016/0109-5641(91)90020-y
  • 5. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965;19:515-530. https://doi.org/10.1016/0030-4220(65)90015-0
  • 6. Jakubinek MB, O'Neill C, Felix C, Price RB, White MA. Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations. Dent Mater 2008;24:1468-1476. https://doi.org/10.1016/j.dental.2008.03.012
  • 7. Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent 2009;37:485-490. https://doi.org/10.1016/j.jdent.2009.03.006
  • 8. Uzel A, Buyukyilmaz T, Kayalioglu M, Uzel I. Temperature rise during orthodontic bonding with various light-curing units-an in vitro study. Angle Orthod 2006;76:330-334. https://doi.org/10.1043/0003-3219(2006)076[0330:TRDOBW]2.0.CO;2
  • 9. Sari T, Celik G, Usumez A. Temperature rise in pulp and gel during laser-activated bleaching: in vitro. Lasers Med Sci 2015;30:577-582. https://doi.org/10.1007/s10103-013-1375-5
  • 10. Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013;38:618-625. https://doi.org/10.2341/12-395-L
  • 11. van Dijken JWV, Pallesen U. Posterior bulk-filled resin composite restorations: a 5-year randomized controlled clinical study. J Dent 2016;51:29-35. https://doi.org/10.1016/j.jdent.2016.05.008
  • 12. Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 2012;28:521-528. https://doi.org/10.1016/j.dental.2012.02.002
  • 13. Chesterman J, Jowett A, Gallacher A, Nixon P. Bulk-fill resin-based composite restorative materials: a review. Br Dent J 2017;222:337-344. https://doi.org/10.1038/sj.bdj.2017.214
  • 14. Rothmund L, Reichl FX, Hickel R, et al. Effect of layer thickness on the elution of bulk-fill composite components. Dent Mater 2017;33:54-62. https://doi.org/10.1016/j.dental.2016.10.006
  • 15. Mosharrafian S, Heidari A, Rahbar P. Microleakage of two bulk fill and one conventional composite in class ii restorations of primary posterior teeth. J Dent (Tehran) 2017;14:123-131.
  • 16. Guiraldo RD, Consani S, Lympius T, Schneider LFJ, Sinhoreti MAC, Correr Sobrinho L. Influence of the light curing unit and thickness of residual dentin on generation of heat during composite photoactivation. J Oral Sci 2008;50:137-142. https://doi.org/10.2334/josnusd.50.137
  • 17. Millen C, Ormond M, Richardson G, Santini A, Miletic V, Kew P. A study of temperature rise in the pulp chamber during composite polymerization with different light-curing units. J Contemp Dent Pract 2007;8:29-37. https://doi.org/10.5005/jcdp-8-7-29
  • 18. Lima AF, Formaggio SEF, Zambelli LFA, et al. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements. Restor Dent Endod 2016;41:271-277. https://doi.org/10.5395/rde.2016.41.4.271
  • 19. Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res 2017;31:e61. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061
  • 20. Mouhat M, Mercer J, Stangvaltaite L, Ortengren U. Light-curing units used in dentistry: factors associated with heat development-potential risk for patients. Clin Oral Investig 2017;21:1687-1696. https://doi.org/10.1007/s00784-016-1962-5
  • 21. Ertugrul IF, Orhan EO, Yazkan B. Effect of different dry-polishing regimens on the intrapulpal temperature assessed with pulpal blood microcirculation model. J Esthet Restor Dent 2019;31:268-274. https://doi.org/10.1111/jerd.12442
  • 22. Al Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Thermographic investigation of contemporary resin-containing dental materials. J Dent 2005;33:593-602. https://doi.org/10.1016/j.jdent.2005.01.010
  • 23. Kim RJY, Son SA, Hwang JY, Lee IB, Seo DG. Comparison of photopolymerization temperature increases in internal and external positions of composite and tooth cavities in real time: incremental fillings of microhybrid composite vs. bulk filling of bulk fill composite. J Dent 2015;43:1093-1098. https://doi.org/10.1016/j.jdent.2015.07.003
  • 24. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007;23:1283-1288. https://doi.org/10.1016/j.dental.2006.11.024
  • 25. Guiraldo RD, Consani S, De Souza AS, Consani RLX, Sinhoreti MAC, Correr Sobrinho L. Influence of light energy density on heat generation during photoactivation of dental composites with different dentin and composite thickness. J Appl Oral Sci 2009;17:289-293. https://doi.org/10.1590/s1678-77572009000400005
  • 26. Guiraldo RD, Consani S, Sinhoreti MA, Correr-Sobrinho L, Schneider LF. Thermal variations in the pulp chamber associated with composite insertion techniques and light-curing methods. J Contemp Dent Pract 2009;10:17-24.
  • 27. Nomoto R, McCabe JF, Hirano S. Comparison of halogen, plasma and LED curing units. Oper Dent 2004;29:287-294.
  • 28. Bouillaguet S, Caillot G, Forchelet J, Cattani Lorente M, Wataha JC, Krejci I. Thermal risks from LED-and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res B Appl Biomater 2005;72:260-267. https://doi.org/10.1002/jbm.b.30143
  • 29. Filtek™ Z250 Universal Restorative System. Available at: https://d3tfk74ciyjzum.cloudfront.net/proclinices/annexes/perfil_tecnico_producto_3m_filtek_z250_5855.pdf Accessed January 22, 2023
  • 30. Filtek Bulk Fill Flowable Restorative Technical Product Profile. Available at: https://multimedia.3m.com/mws/media/792321O/filtek-bulk-fill-flowable-restorative-technical-product-profile.pdf Accessed January 18, 2023
  • 31. Nascimento AS, Rodrigues JFB, Torres RHN, et al. Physicomechanical and thermal analysis of bulk-fill and conventional composites. Braz Oral Res 2019;33:e008. https://doi.org/10.1590/1807-3107bor-2019.vol33.0008
  • 32. Watts DC, McAndrew R, Lloyd CH. Thermal diffusivity of composite restorative materials. J Dent Res 1987;66:1576-1578. https://doi.org/10.1177/00220345870660101201
  • 33. Pires JA, Cvitko E, Denehy GE, Swift Jr EJ. Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int 1993;24:517-521.
  • 34. Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil 2001;28:586-591. https://doi.org/10.1046/j.1365-2842.2001.00709.x
  • 35. Shortall AC, Harrington E. Temperature rise during polymerization of light-activated resin composites. J Oral Rehabil 1998;25:908-913. https://doi.org/10.1046/j.1365-2842.1998.00336.x
  • 36. Baldissara P, Catapano S, Scotti R. Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil 1997;24:791-801. https://doi.org/10.1046/j.1365-2842.1997.00566.x
  • 37. Pohto M, Scheinin A. Microscopic observations on living dental pulp II. the effect of thermal irritants on the circulation of the pulp in the lower rat incisor. Acta Odontol Scand 1958;16:315-327. https://doi.org/10.3109/00016355809064116
  • 38. Schubert L. Temperature measurements in teeth using the light beam galvanometer during grinding and drilling. Zahnärztl Welt 1957;58:768-772.
  • 39. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-107. https://doi.org/10.1016/0022-3913(83)90174-9

Rezin fotopolimerizasyonunun süt dişleri pulpal sıcaklık değişimi üzerine etkisi

Yıl 2023, Cilt: 16 Sayı: 3, 466 - 474, 01.07.2023
https://doi.org/10.31362/patd.1257746

Öz

Amaç: Restoratif materyallerin polimerizasyonu pulpal sıcaklığı artırma potansiyeline sahiptir ve pulpa dokusuna zarar verebilir. Çalışmanın amacı, süt dişi pulpal sıcaklık değişimini bir mikrosirkülasyon modeli kullanarak iki LED ışık cihazı (Valo Cordless®, EliparTM DeepCure-S) ve üç restoratif grup (Filtek™ Bulk Fill Flowable, Filtek™ Z250 Universal Restorative ve boş kavite) ile karşılaştırmaktır.
Gereç ve yöntem: On adet sağlam insan üst ikinci süt azı dişi kullanıldı. 1 mm dentin kalınlığı kalacak şekilde standardize Sınıf V kavite preparasyonları yapıldı ve restoratif gruplarda LED ışık cihazları kullanıldı. Pulpa odasındaki en yüksek sıcaklık noktası kaydedildi. Verilerin analizi için tekrarlı ölçümler ANOVA ve eşleştirilmiş örneklemler t-testi kullanıldı (p<0,05).
Bulgular: EliparTM DeepCure-S grupları, Z250, Bulk Fill ve boş kavite için kabul edilen kritik sıcaklık noktası olan 5,6°C'yi aştı (sırasıyla 7,6±0,36, 7,44±0,7 ve 5,81±1,6). Valo Cordless® ile ışık uygulanan grupların hiçbiri kritik noktaya ulaşmadı (sırasıyla 5,35±0,54, 5,44±0,41 ve 5,02±0,89). Valo Cordless® ile ışık uygulanan farklı gruplardaki değerler arasında anlamlı fark yoktu (p≥0,05), ancak EliparTM DeepCure-S cihazı kullanıldığında boş kavite, kompozit rezin gruplarına göre anlamlı derecede daha düşük sıcaklık değerleri gösterdi (p<0,05).
Sonuç: Çalışma, LED ışık cihazlarının artan gücü ile restoratif işlemlerde pulpa hasarı arasında bir ilişki olduğunu göstermiştir.

Kaynakça

  • 1. Trowbridge HO, Kim S. Pulp development, structure and function. In: Cohen S, Burns RC. Pathways of the Pulp, 6th ed. St. Louis: Mosby, 1994;296-336. Available at: https://www.academia. edu/28876240/Pathways_of_the_pulp_COHEN_. Accessed January 22, 2023
  • 2. Ozturk B, Usumez A, Ozturk AN, Ozer F. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 2004;91:436-440. https://doi.org/10.1016/S0022391304001131
  • 3. Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006;96:328-331. https://doi.org/10.1016/j.prosdent.2006.09.008
  • 4. Dodge WW, Dale RA, Cooley RL, Duke ES. Comparison of wet and dry finishing of resin composites with aluminum oxide discs. Dent Mater 1991;7:18-20. https://doi.org/10.1016/0109-5641(91)90020-y
  • 5. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965;19:515-530. https://doi.org/10.1016/0030-4220(65)90015-0
  • 6. Jakubinek MB, O'Neill C, Felix C, Price RB, White MA. Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations. Dent Mater 2008;24:1468-1476. https://doi.org/10.1016/j.dental.2008.03.012
  • 7. Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent 2009;37:485-490. https://doi.org/10.1016/j.jdent.2009.03.006
  • 8. Uzel A, Buyukyilmaz T, Kayalioglu M, Uzel I. Temperature rise during orthodontic bonding with various light-curing units-an in vitro study. Angle Orthod 2006;76:330-334. https://doi.org/10.1043/0003-3219(2006)076[0330:TRDOBW]2.0.CO;2
  • 9. Sari T, Celik G, Usumez A. Temperature rise in pulp and gel during laser-activated bleaching: in vitro. Lasers Med Sci 2015;30:577-582. https://doi.org/10.1007/s10103-013-1375-5
  • 10. Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013;38:618-625. https://doi.org/10.2341/12-395-L
  • 11. van Dijken JWV, Pallesen U. Posterior bulk-filled resin composite restorations: a 5-year randomized controlled clinical study. J Dent 2016;51:29-35. https://doi.org/10.1016/j.jdent.2016.05.008
  • 12. Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 2012;28:521-528. https://doi.org/10.1016/j.dental.2012.02.002
  • 13. Chesterman J, Jowett A, Gallacher A, Nixon P. Bulk-fill resin-based composite restorative materials: a review. Br Dent J 2017;222:337-344. https://doi.org/10.1038/sj.bdj.2017.214
  • 14. Rothmund L, Reichl FX, Hickel R, et al. Effect of layer thickness on the elution of bulk-fill composite components. Dent Mater 2017;33:54-62. https://doi.org/10.1016/j.dental.2016.10.006
  • 15. Mosharrafian S, Heidari A, Rahbar P. Microleakage of two bulk fill and one conventional composite in class ii restorations of primary posterior teeth. J Dent (Tehran) 2017;14:123-131.
  • 16. Guiraldo RD, Consani S, Lympius T, Schneider LFJ, Sinhoreti MAC, Correr Sobrinho L. Influence of the light curing unit and thickness of residual dentin on generation of heat during composite photoactivation. J Oral Sci 2008;50:137-142. https://doi.org/10.2334/josnusd.50.137
  • 17. Millen C, Ormond M, Richardson G, Santini A, Miletic V, Kew P. A study of temperature rise in the pulp chamber during composite polymerization with different light-curing units. J Contemp Dent Pract 2007;8:29-37. https://doi.org/10.5005/jcdp-8-7-29
  • 18. Lima AF, Formaggio SEF, Zambelli LFA, et al. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements. Restor Dent Endod 2016;41:271-277. https://doi.org/10.5395/rde.2016.41.4.271
  • 19. Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res 2017;31:e61. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061
  • 20. Mouhat M, Mercer J, Stangvaltaite L, Ortengren U. Light-curing units used in dentistry: factors associated with heat development-potential risk for patients. Clin Oral Investig 2017;21:1687-1696. https://doi.org/10.1007/s00784-016-1962-5
  • 21. Ertugrul IF, Orhan EO, Yazkan B. Effect of different dry-polishing regimens on the intrapulpal temperature assessed with pulpal blood microcirculation model. J Esthet Restor Dent 2019;31:268-274. https://doi.org/10.1111/jerd.12442
  • 22. Al Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Thermographic investigation of contemporary resin-containing dental materials. J Dent 2005;33:593-602. https://doi.org/10.1016/j.jdent.2005.01.010
  • 23. Kim RJY, Son SA, Hwang JY, Lee IB, Seo DG. Comparison of photopolymerization temperature increases in internal and external positions of composite and tooth cavities in real time: incremental fillings of microhybrid composite vs. bulk filling of bulk fill composite. J Dent 2015;43:1093-1098. https://doi.org/10.1016/j.jdent.2015.07.003
  • 24. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007;23:1283-1288. https://doi.org/10.1016/j.dental.2006.11.024
  • 25. Guiraldo RD, Consani S, De Souza AS, Consani RLX, Sinhoreti MAC, Correr Sobrinho L. Influence of light energy density on heat generation during photoactivation of dental composites with different dentin and composite thickness. J Appl Oral Sci 2009;17:289-293. https://doi.org/10.1590/s1678-77572009000400005
  • 26. Guiraldo RD, Consani S, Sinhoreti MA, Correr-Sobrinho L, Schneider LF. Thermal variations in the pulp chamber associated with composite insertion techniques and light-curing methods. J Contemp Dent Pract 2009;10:17-24.
  • 27. Nomoto R, McCabe JF, Hirano S. Comparison of halogen, plasma and LED curing units. Oper Dent 2004;29:287-294.
  • 28. Bouillaguet S, Caillot G, Forchelet J, Cattani Lorente M, Wataha JC, Krejci I. Thermal risks from LED-and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res B Appl Biomater 2005;72:260-267. https://doi.org/10.1002/jbm.b.30143
  • 29. Filtek™ Z250 Universal Restorative System. Available at: https://d3tfk74ciyjzum.cloudfront.net/proclinices/annexes/perfil_tecnico_producto_3m_filtek_z250_5855.pdf Accessed January 22, 2023
  • 30. Filtek Bulk Fill Flowable Restorative Technical Product Profile. Available at: https://multimedia.3m.com/mws/media/792321O/filtek-bulk-fill-flowable-restorative-technical-product-profile.pdf Accessed January 18, 2023
  • 31. Nascimento AS, Rodrigues JFB, Torres RHN, et al. Physicomechanical and thermal analysis of bulk-fill and conventional composites. Braz Oral Res 2019;33:e008. https://doi.org/10.1590/1807-3107bor-2019.vol33.0008
  • 32. Watts DC, McAndrew R, Lloyd CH. Thermal diffusivity of composite restorative materials. J Dent Res 1987;66:1576-1578. https://doi.org/10.1177/00220345870660101201
  • 33. Pires JA, Cvitko E, Denehy GE, Swift Jr EJ. Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int 1993;24:517-521.
  • 34. Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil 2001;28:586-591. https://doi.org/10.1046/j.1365-2842.2001.00709.x
  • 35. Shortall AC, Harrington E. Temperature rise during polymerization of light-activated resin composites. J Oral Rehabil 1998;25:908-913. https://doi.org/10.1046/j.1365-2842.1998.00336.x
  • 36. Baldissara P, Catapano S, Scotti R. Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil 1997;24:791-801. https://doi.org/10.1046/j.1365-2842.1997.00566.x
  • 37. Pohto M, Scheinin A. Microscopic observations on living dental pulp II. the effect of thermal irritants on the circulation of the pulp in the lower rat incisor. Acta Odontol Scand 1958;16:315-327. https://doi.org/10.3109/00016355809064116
  • 38. Schubert L. Temperature measurements in teeth using the light beam galvanometer during grinding and drilling. Zahnärztl Welt 1957;58:768-772.
  • 39. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-107. https://doi.org/10.1016/0022-3913(83)90174-9
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Fizyoloji
Bölüm Araştırma Makalesi
Yazarlar

Yıldırım Erdoğan 0000-0002-5054-1812

İhsan Furkan Ertuğrul 0000-0001-7583-6679

Erken Görünüm Tarihi 14 Haziran 2023
Yayımlanma Tarihi 1 Temmuz 2023
Gönderilme Tarihi 28 Şubat 2023
Kabul Tarihi 3 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 3

Kaynak Göster

APA Erdoğan, Y., & Ertuğrul, İ. F. (2023). Effect of resin photopolymerization on primary teeth pulpal temperature change. Pamukkale Medical Journal, 16(3), 466-474. https://doi.org/10.31362/patd.1257746
AMA Erdoğan Y, Ertuğrul İF. Effect of resin photopolymerization on primary teeth pulpal temperature change. Pam Tıp Derg. Temmuz 2023;16(3):466-474. doi:10.31362/patd.1257746
Chicago Erdoğan, Yıldırım, ve İhsan Furkan Ertuğrul. “Effect of Resin Photopolymerization on Primary Teeth Pulpal Temperature Change”. Pamukkale Medical Journal 16, sy. 3 (Temmuz 2023): 466-74. https://doi.org/10.31362/patd.1257746.
EndNote Erdoğan Y, Ertuğrul İF (01 Temmuz 2023) Effect of resin photopolymerization on primary teeth pulpal temperature change. Pamukkale Medical Journal 16 3 466–474.
IEEE Y. Erdoğan ve İ. F. Ertuğrul, “Effect of resin photopolymerization on primary teeth pulpal temperature change”, Pam Tıp Derg, c. 16, sy. 3, ss. 466–474, 2023, doi: 10.31362/patd.1257746.
ISNAD Erdoğan, Yıldırım - Ertuğrul, İhsan Furkan. “Effect of Resin Photopolymerization on Primary Teeth Pulpal Temperature Change”. Pamukkale Medical Journal 16/3 (Temmuz 2023), 466-474. https://doi.org/10.31362/patd.1257746.
JAMA Erdoğan Y, Ertuğrul İF. Effect of resin photopolymerization on primary teeth pulpal temperature change. Pam Tıp Derg. 2023;16:466–474.
MLA Erdoğan, Yıldırım ve İhsan Furkan Ertuğrul. “Effect of Resin Photopolymerization on Primary Teeth Pulpal Temperature Change”. Pamukkale Medical Journal, c. 16, sy. 3, 2023, ss. 466-74, doi:10.31362/patd.1257746.
Vancouver Erdoğan Y, Ertuğrul İF. Effect of resin photopolymerization on primary teeth pulpal temperature change. Pam Tıp Derg. 2023;16(3):466-74.
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır