Analytical solution for the conformable fractional telegraph equation by Fourier method
Year 2020,
Volume: 2 Issue: 1, 1 - 6, 30.06.2020
Saad Abdelkebir
,
Brahim Nouırı
Abstract
n this paper, the Fourier method is effectively implemented for solving a conformable fractional telegraph equation. We discuss and derive the analytical solution of the conformable fractional telegraph equation with nonhomogeneous Dirichlet boundary condition.
References
- [1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies 204, Elsevier, New York, NY,
USA, 2006.
- [2] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
- [3] E. C. Eckstein, J. A.Goldstein, and M. Leggas. Themathematics of suspensions:Kac walks and asymptotic analyticity. Electronic Journal of Differential Equations, vol. 3, pp. 39-50, 1999.
- [4] R. C. Cascaval, E. C. Eckstein, C. L. Frota, and J. A. Goldstein. Fractional telegraph equations, Journal of Mathematical Analysis and Applications, vol. 276, no. 1, pp. 145-159,
2002.
- [5] J. Chen, F. Liu, and V. Anh, Analytical solution for the time fractional telegraph equation by the method of separating variables, Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp. 1364-1377, 2008.
- [6] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. A new definition of fractional derivative, Journal of Computational and Applied Mathematics, vol. 264, pp. 65-70, 2014.
- [7] T. Abdeljawad. On conformable fractional calculus, Journal of Computational and Applied Mathematics, vol. 279, pp. 57-66, 2015.
Year 2020,
Volume: 2 Issue: 1, 1 - 6, 30.06.2020
Saad Abdelkebir
,
Brahim Nouırı
References
- [1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies 204, Elsevier, New York, NY,
USA, 2006.
- [2] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
- [3] E. C. Eckstein, J. A.Goldstein, and M. Leggas. Themathematics of suspensions:Kac walks and asymptotic analyticity. Electronic Journal of Differential Equations, vol. 3, pp. 39-50, 1999.
- [4] R. C. Cascaval, E. C. Eckstein, C. L. Frota, and J. A. Goldstein. Fractional telegraph equations, Journal of Mathematical Analysis and Applications, vol. 276, no. 1, pp. 145-159,
2002.
- [5] J. Chen, F. Liu, and V. Anh, Analytical solution for the time fractional telegraph equation by the method of separating variables, Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp. 1364-1377, 2008.
- [6] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. A new definition of fractional derivative, Journal of Computational and Applied Mathematics, vol. 264, pp. 65-70, 2014.
- [7] T. Abdeljawad. On conformable fractional calculus, Journal of Computational and Applied Mathematics, vol. 279, pp. 57-66, 2015.