Research Article
BibTex RIS Cite
Year 2022, Volume: 4 Issue: 2, 88 - 94, 31.12.2022

Abstract

References

  • [1] J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho and Y. O. Yang, Fixed point results for generalized θ-contractions, J. Nonlinear Sci. Appl., 10 (23502358), 1 (2017).
  • [2] I. Altun, H. A. Hanc¸er and G. Mınak, On a general class of weakly Picard operators, Miskolc Mathematical Notes, 16 (1), 25-32 (2015).
  • [3] I. Altun and G. Mınak, On fixed point theorems for multivalued mappings of Feng-Liu type, Bulletin of the Korean Mathematical Society, 52 (6), 1901-1910 (2015).
  • [4] I. Altun, H. Sahin, and D. Turkoglu, Fixed point results for multivalued mappings of Feng-Liu type on M metric spaces, J. Nonlinear Funct. Anal., 2018, 7 (2018).
  • [5] M. Asadi, E. Karapınar and P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, Journal of Inequalities and Applications, 1, 1-9 (2014).
  • [6] G. Durmaz and I. Altun, A new perspective for multivalued weakly picard operators, Publications de l’Institut Mathematique, 101 (115), 197-204 (2017).
  • [7] G. Durmaz and I. Altun, On nonlinear set-valued θ-contractions, Bulletin of the Malaysian Mathematical Sciences Society, 43 (1), 389-402 (2020).
  • [8] H. A. Hanc¸er, G. Mınak and I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (1), 229-236 (2017).
  • [9] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications, pp.
  • [10] M. Jleli, E. Karapınar and B. Samet, Further generalizations of the Banach contraction principle, Journal of Inequalities and Applications, 1, 1-9 (2014).
  • [11] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, Journal of inequalities and applications, 1, 1-8 (2014).
  • [12] Feng, Y., Liu, S, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J.Math. Anal. Appl., 317, 103-112 (2006).
  • [13] X. D. Liu, S. S. Chang, Y. Xiao and L. C. Zhao, Existence of fixed points for θ-type contraction and θ-type Suzuki contraction in complete metric spaces, Fixed Point Theory and Applications, 1, 1-12 (2016).
  • [14] H. Sahin, I. Altun and D. Turkoglu, Two fixed point results for multivalued F-contractions on M-metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 113 (3), 1839-1849 (2019).
  • [15] H. Sahin, I. Altun and D. Turkoglu, Fixed point results for mixed multivalued mappings of Feng-Liu type on M b-metric spaces, Mathematical Methods in Engineering, (pp. 67-80). Springer, (2019).

Fixed Point Theorems for Multivalued Mappings of Feng-Liu Type Θ-contractions on M-metric Spaces

Year 2022, Volume: 4 Issue: 2, 88 - 94, 31.12.2022

Abstract

In this paper, we give new fixed point results for multivalued mappings by considering Feng-Liu’s technique θcontractions on M-complete M-metric spaces which into itself by extending θ-contractions introduced by Jleli and Samet. Our
results extend and generalize some related fixed point theorems including the famous Feng-Liu’s results in the literature.

References

  • [1] J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho and Y. O. Yang, Fixed point results for generalized θ-contractions, J. Nonlinear Sci. Appl., 10 (23502358), 1 (2017).
  • [2] I. Altun, H. A. Hanc¸er and G. Mınak, On a general class of weakly Picard operators, Miskolc Mathematical Notes, 16 (1), 25-32 (2015).
  • [3] I. Altun and G. Mınak, On fixed point theorems for multivalued mappings of Feng-Liu type, Bulletin of the Korean Mathematical Society, 52 (6), 1901-1910 (2015).
  • [4] I. Altun, H. Sahin, and D. Turkoglu, Fixed point results for multivalued mappings of Feng-Liu type on M metric spaces, J. Nonlinear Funct. Anal., 2018, 7 (2018).
  • [5] M. Asadi, E. Karapınar and P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, Journal of Inequalities and Applications, 1, 1-9 (2014).
  • [6] G. Durmaz and I. Altun, A new perspective for multivalued weakly picard operators, Publications de l’Institut Mathematique, 101 (115), 197-204 (2017).
  • [7] G. Durmaz and I. Altun, On nonlinear set-valued θ-contractions, Bulletin of the Malaysian Mathematical Sciences Society, 43 (1), 389-402 (2020).
  • [8] H. A. Hanc¸er, G. Mınak and I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (1), 229-236 (2017).
  • [9] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications, pp.
  • [10] M. Jleli, E. Karapınar and B. Samet, Further generalizations of the Banach contraction principle, Journal of Inequalities and Applications, 1, 1-9 (2014).
  • [11] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, Journal of inequalities and applications, 1, 1-8 (2014).
  • [12] Feng, Y., Liu, S, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J.Math. Anal. Appl., 317, 103-112 (2006).
  • [13] X. D. Liu, S. S. Chang, Y. Xiao and L. C. Zhao, Existence of fixed points for θ-type contraction and θ-type Suzuki contraction in complete metric spaces, Fixed Point Theory and Applications, 1, 1-12 (2016).
  • [14] H. Sahin, I. Altun and D. Turkoglu, Two fixed point results for multivalued F-contractions on M-metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 113 (3), 1839-1849 (2019).
  • [15] H. Sahin, I. Altun and D. Turkoglu, Fixed point results for mixed multivalued mappings of Feng-Liu type on M b-metric spaces, Mathematical Methods in Engineering, (pp. 67-80). Springer, (2019).
There are 15 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Maide Gökşin Taş 0000-0002-5373-2825

Duran Türkoğlu 0000-0002-8667-1432

İshak Altun 0000-0002-7967-0554

Publication Date December 31, 2022
Acceptance Date December 31, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.