Araştırma Makalesi
BibTex RIS Kaynak Göster

Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı

Yıl 2024, , 1643 - 1648, 25.09.2024
https://doi.org/10.2339/politeknik.1110050

Öz

Gelişen uydu haberleşme sistemleri ile birlikte düşük gürültülü kuvvetlendirici (Low Noise Amplifier-LNA) ve alt sistemlerine gösterilen ilgi her geçen gün artmaktadır. Düşük gürültülü kuvvetlendirici alt sistemleri uydu haberleşmesinde düşük güçlü sinyalleri kuvvetlendirerek gürültü seviyesini en düşük seviyede tutmakta önemli bir rol oynamaktadır. Bu çalışma kapsamında, uydu haberleşme uygulamalarında kullanılabilecek 8025-8400 MHz frekans bandına sahip iki katlı düşük gürültülü kuvvetlendirici tasarımı gerçekleştirilmiştir. Tasarımda RT5880 alttaşı üzerine mikroşerit teknolojisi ve CE3512K2 transistörü kullanılmıştır. Tasarımda uyumlama devreleri mikroşerit hatlar ve paketli radyo frekansı (Radio Frequency-RF) malzemeleri ile gerçeklenmiştir. Geliştirilen LNA devresinin S-parametresi ölçüm sonuçlarına göre, giriş ve çıkış geri yansıma katsayıları sırasıyla -14 dB ve -15 dB’den daha iyi olduğu görülmüştür. Ölçülen kazanç değeri ise 21.9 dB’den iyi olarak elde edilmiştir. Ek olarak, 2 katlı LNA devresinin 40 mW güç tükettiği durumda gürültü figürü değerinin çalışma bandı içerisinde 1.1 dB’den düşük olduğu ve 1-dB bastırma noktasındaki çıkış gücünün ise +14.6 dBm olduğu görülmüştür.

Kaynakça

  • [1] Li, F., Lam, K.Y., Zhao, N., Liu, X., Zhao, K., Wang, L., "Spectrum trading for satellite communication systems with dynamic bargaining", IEEE Transactions on Communications, 66(10): 4680-4693, (2018).
  • [2] Yu, Y., Liu, H., Wu, Y., Kang, K., "A 54.4–90 GHz low-noise amplifier in 65-nm CMOS", IEEE Journal of Solid-State Circuits, 52(11): 2892-2904, (2017).
  • [3] Alsuraisry, H., Lin, W. J., Huang, I., Huang, T. W., “Design of Ka-band Transceiver for Satellite Communication”, IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Jordan, 307-310, (2019).
  • [4] Arican GO, Akcam N, Yazgan E., “Ku-band GaAs mHEMT MMIC and RF front-end module for space applications”, Microwave and Optical Technology Letters, 1–9, (2020).
  • [5] Kouhalvandi, L., Ceylan, O., Paker, S., Yağcı, H.B., "Design and realization of a novel planar array antenna and low power LNA for Ku-band small satellite communications", Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1394-1403, (2017).
  • [6] Öz İ., “GEO satellite orbit determination using spaceborn onboard receiver”, Politeknik Dergisi, (2022).
  • [7] Hazer A. and Yıldırım R., “A new approach to ıncreasing the bandwidth of fiber-optic communication systems”, Politeknik Dergisi, (2023).
  • [8] Altiraiki S., Tezel N. S., “A new approach to pilot contamination in massive mimo systems for 5G communication networks with butterfly optimization algorithm”, Politeknik Dergisi, 25(4): 1753-1759, (2022).
  • [9] Abo-Zeed, M., Din, J. B., Shayea, I., Ergen, M., "Survey on land mobile satellite system: Challenges and future research trends." IEEE Access, 7: 137291-137304, (2019).
  • [10] Wei, T., Feng, W., Chen, Y., Wang, C. X., Ge, N., Lu, J., "Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: Key technologies, opportunities, and challenges", IEEE Internet of Things Journal, 8(11): 8910-8934, (2021).
  • [11] Liu, X., Lin, M., Kong, H., Ouyang, J., & Cheng, J., "Outage performance for optical feeder link in satellite communications with diversity combining", IEEE Wireless Communications Letters, 10(5): 1108-1112, (2021).
  • [12] Chippalkatti, V.S., Biradar, R.C., Rana, S.S., "Recent Technology Trends in Satellite Communication Subsystems", IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, (2021).
  • [13] Abbasi-Moghadam, D., Hotkani, S.M.H.N., Abolghasemi, M., "Store and forward communication payload design for LEO satellite systems", Majlesi Journal of Electrical Engineering, 10(3): 7-17, (2016).
  • [14] Belen, A., “WLAN uygulamaları için düşük gürültülü kuvvetlendirici tasarımı”, Avrupa Bilim ve Teknoloji Dergisi, 25: 665-668, (2021).
  • [15] Cha, Eunjung, et al. "0.3–14 and 16–28 GHz wide-bandwidth cryogenic MMIC low-noise amplifiers", IEEE Transactions on Microwave Theory and Techniques, 66(11): 4860-4869, (2018).
  • [16] Roy, D., Choudhury, A.R., Mohiyuddin, M., Sucharitha, A.V., Ramana, D.V., "Design and realisation of ku-band tele-command and ranging receiver for satellite application", IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, (2018).
  • [17] Arican, G. O., Akcam, N. "Design of a Low Cost X-Band LNA with Sub-1-dB NF for SATCOM Applications", Gazi University Journal of Science: 36(3): (2022).
  • [18] Pace, L., Longhi, P. E., Ciccognani, W., Colangeli, S., Leblanc, R., & Limiti, E., "A MMIC Low-Noise Amplifier realized with two different gate length GaN-on-Si technologies.", 50th European Microwave Conference (EuMC), Utrecht, Netherlands, 1023-1026, (2021).
  • [19] Zhang, S., Xu, J., Zheng, P., Wang, R., & Tong, X., "An 18–31-GHz GaN-based LNA with 0.8-dB minimum NF and high robustness", IEEE Microwave and Wireless Components Letters, 30(9): 896-899, (2020).
  • [20] Caglar, A., Yelten, M.B., "A 180-nm X-Band Cryogenic CMOS LNA", IEEE Microwave and Wireless Components Letters, 30(4): 395-398, (2020).
  • [21] Arican, G.O., Dokmetas, B., Akcam, N. and Yazgan, E., “28-36 GHz MMIC LNA Design for Satellite Applications”, 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 726-729, (2019).
  • [22] Yurttakal, O., Gunes, F., "Performance Enhancement Of Lna Using Series Feedback", Sigma Journal of Engineering and Natural Sciences, 37(4): 1096-1106, (2019).
  • [23] Arican, G.O., Akcam, N. and Yazgan, E., “Ku-band MMIC LNA design for space applications”, International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, 274-278, (2019).
  • [24] Lerdworatawee, J., Namgoong, W., "Wide-band CMOS cascode low-noise amplifier design based on source degeneration topology", IEEE Transactions on Circuits and Systems I: Regular Papers, 52(11): 2327-2334, (2005).
  • [25] Lin, Y.T., Chen, H.C., Wang, T., Lin, Y.S., Lu, S.S. "3–10-GHz ultra-wideband low-noise amplifier utilizing miller effect and inductive shunt–shunt feedback technique", IEEE Transactions on Microwave Theory and Techniques, 55(9): 1832-1843, (2007).
  • [26] Armagan Gurdal, Burak Alptug Yilmaz, Omer Cengiz, Ozlern Sen, Ekmel Ozbay, ”X Band GaN Based MMIC Power Amplifier with 36.5dBm P1- dB for Space Applications”, 48th European Microwave Conference (EuMC), (2018).

Design of 8025-8400 MHz Low-Noise Amplifier (LNA) for Satellite Communication System

Yıl 2024, , 1643 - 1648, 25.09.2024
https://doi.org/10.2339/politeknik.1110050

Öz

Developments in satellite communication systems increase the interest in Low Noise Amplifier-LNA and its subsystems. Low-noise amplifier subsystems are used to amplify low-power signals and keep the noise at minimum level in satellite communications. In this study, a two-layer low-noise amplifier design is proposed for the frequency band range of 8025-8400 MHz. RT5880 substrate and CE3512K2 transistor are used as materials in the design. Matching circuits are realized with microstrip lines and packaged Radio Frequency-RF materials. According to the measurement results, the input (S11) and output (S22) reflection losses in the operating frequency band were obtained better than -14 dB and -15 dB, respectively. The measured gain value was obtained better than 21.9 dB. In addition, in the case that the 2-layer LNA circuit consumes 40 mW of power, the noise figure value is obtained lower than 1.1 dB in the operating band and the output power at the 1-dB suppression point is achieved +14.6 dBm.

Kaynakça

  • [1] Li, F., Lam, K.Y., Zhao, N., Liu, X., Zhao, K., Wang, L., "Spectrum trading for satellite communication systems with dynamic bargaining", IEEE Transactions on Communications, 66(10): 4680-4693, (2018).
  • [2] Yu, Y., Liu, H., Wu, Y., Kang, K., "A 54.4–90 GHz low-noise amplifier in 65-nm CMOS", IEEE Journal of Solid-State Circuits, 52(11): 2892-2904, (2017).
  • [3] Alsuraisry, H., Lin, W. J., Huang, I., Huang, T. W., “Design of Ka-band Transceiver for Satellite Communication”, IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Jordan, 307-310, (2019).
  • [4] Arican GO, Akcam N, Yazgan E., “Ku-band GaAs mHEMT MMIC and RF front-end module for space applications”, Microwave and Optical Technology Letters, 1–9, (2020).
  • [5] Kouhalvandi, L., Ceylan, O., Paker, S., Yağcı, H.B., "Design and realization of a novel planar array antenna and low power LNA for Ku-band small satellite communications", Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1394-1403, (2017).
  • [6] Öz İ., “GEO satellite orbit determination using spaceborn onboard receiver”, Politeknik Dergisi, (2022).
  • [7] Hazer A. and Yıldırım R., “A new approach to ıncreasing the bandwidth of fiber-optic communication systems”, Politeknik Dergisi, (2023).
  • [8] Altiraiki S., Tezel N. S., “A new approach to pilot contamination in massive mimo systems for 5G communication networks with butterfly optimization algorithm”, Politeknik Dergisi, 25(4): 1753-1759, (2022).
  • [9] Abo-Zeed, M., Din, J. B., Shayea, I., Ergen, M., "Survey on land mobile satellite system: Challenges and future research trends." IEEE Access, 7: 137291-137304, (2019).
  • [10] Wei, T., Feng, W., Chen, Y., Wang, C. X., Ge, N., Lu, J., "Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: Key technologies, opportunities, and challenges", IEEE Internet of Things Journal, 8(11): 8910-8934, (2021).
  • [11] Liu, X., Lin, M., Kong, H., Ouyang, J., & Cheng, J., "Outage performance for optical feeder link in satellite communications with diversity combining", IEEE Wireless Communications Letters, 10(5): 1108-1112, (2021).
  • [12] Chippalkatti, V.S., Biradar, R.C., Rana, S.S., "Recent Technology Trends in Satellite Communication Subsystems", IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, (2021).
  • [13] Abbasi-Moghadam, D., Hotkani, S.M.H.N., Abolghasemi, M., "Store and forward communication payload design for LEO satellite systems", Majlesi Journal of Electrical Engineering, 10(3): 7-17, (2016).
  • [14] Belen, A., “WLAN uygulamaları için düşük gürültülü kuvvetlendirici tasarımı”, Avrupa Bilim ve Teknoloji Dergisi, 25: 665-668, (2021).
  • [15] Cha, Eunjung, et al. "0.3–14 and 16–28 GHz wide-bandwidth cryogenic MMIC low-noise amplifiers", IEEE Transactions on Microwave Theory and Techniques, 66(11): 4860-4869, (2018).
  • [16] Roy, D., Choudhury, A.R., Mohiyuddin, M., Sucharitha, A.V., Ramana, D.V., "Design and realisation of ku-band tele-command and ranging receiver for satellite application", IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, (2018).
  • [17] Arican, G. O., Akcam, N. "Design of a Low Cost X-Band LNA with Sub-1-dB NF for SATCOM Applications", Gazi University Journal of Science: 36(3): (2022).
  • [18] Pace, L., Longhi, P. E., Ciccognani, W., Colangeli, S., Leblanc, R., & Limiti, E., "A MMIC Low-Noise Amplifier realized with two different gate length GaN-on-Si technologies.", 50th European Microwave Conference (EuMC), Utrecht, Netherlands, 1023-1026, (2021).
  • [19] Zhang, S., Xu, J., Zheng, P., Wang, R., & Tong, X., "An 18–31-GHz GaN-based LNA with 0.8-dB minimum NF and high robustness", IEEE Microwave and Wireless Components Letters, 30(9): 896-899, (2020).
  • [20] Caglar, A., Yelten, M.B., "A 180-nm X-Band Cryogenic CMOS LNA", IEEE Microwave and Wireless Components Letters, 30(4): 395-398, (2020).
  • [21] Arican, G.O., Dokmetas, B., Akcam, N. and Yazgan, E., “28-36 GHz MMIC LNA Design for Satellite Applications”, 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 726-729, (2019).
  • [22] Yurttakal, O., Gunes, F., "Performance Enhancement Of Lna Using Series Feedback", Sigma Journal of Engineering and Natural Sciences, 37(4): 1096-1106, (2019).
  • [23] Arican, G.O., Akcam, N. and Yazgan, E., “Ku-band MMIC LNA design for space applications”, International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, 274-278, (2019).
  • [24] Lerdworatawee, J., Namgoong, W., "Wide-band CMOS cascode low-noise amplifier design based on source degeneration topology", IEEE Transactions on Circuits and Systems I: Regular Papers, 52(11): 2327-2334, (2005).
  • [25] Lin, Y.T., Chen, H.C., Wang, T., Lin, Y.S., Lu, S.S. "3–10-GHz ultra-wideband low-noise amplifier utilizing miller effect and inductive shunt–shunt feedback technique", IEEE Transactions on Microwave Theory and Techniques, 55(9): 1832-1843, (2007).
  • [26] Armagan Gurdal, Burak Alptug Yilmaz, Omer Cengiz, Ozlern Sen, Ekmel Ozbay, ”X Band GaN Based MMIC Power Amplifier with 36.5dBm P1- dB for Space Applications”, 48th European Microwave Conference (EuMC), (2018).
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Burak Dökmetaş 0000-0001-5900-6691

Nursel Akçam 0000-0003-0585-3988

Erken Görünüm Tarihi 22 Mart 2024
Yayımlanma Tarihi 25 Eylül 2024
Gönderilme Tarihi 28 Nisan 2022
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Dökmetaş, B., & Akçam, N. (2024). Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı. Politeknik Dergisi, 27(4), 1643-1648. https://doi.org/10.2339/politeknik.1110050
AMA Dökmetaş B, Akçam N. Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı. Politeknik Dergisi. Eylül 2024;27(4):1643-1648. doi:10.2339/politeknik.1110050
Chicago Dökmetaş, Burak, ve Nursel Akçam. “Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı”. Politeknik Dergisi 27, sy. 4 (Eylül 2024): 1643-48. https://doi.org/10.2339/politeknik.1110050.
EndNote Dökmetaş B, Akçam N (01 Eylül 2024) Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı. Politeknik Dergisi 27 4 1643–1648.
IEEE B. Dökmetaş ve N. Akçam, “Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı”, Politeknik Dergisi, c. 27, sy. 4, ss. 1643–1648, 2024, doi: 10.2339/politeknik.1110050.
ISNAD Dökmetaş, Burak - Akçam, Nursel. “Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı”. Politeknik Dergisi 27/4 (Eylül 2024), 1643-1648. https://doi.org/10.2339/politeknik.1110050.
JAMA Dökmetaş B, Akçam N. Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı. Politeknik Dergisi. 2024;27:1643–1648.
MLA Dökmetaş, Burak ve Nursel Akçam. “Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı”. Politeknik Dergisi, c. 27, sy. 4, 2024, ss. 1643-8, doi:10.2339/politeknik.1110050.
Vancouver Dökmetaş B, Akçam N. Uydu Haberleşme Sistemleri için 8025-8400 MHz Düşük Gürültülü Kuvvetlendirici Tasarımı. Politeknik Dergisi. 2024;27(4):1643-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.